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Gravitational memory is an important prediction of General Relativity, which is intimately related
to asymptotic symmetries at null infinity and the so-called soft graviton theorem. For a given tran-
sient astronomical event, the angular distribution of energy and angular momentum fluxes uniquely
determine the displacement and spin memory effect in the sky. We investigate the possibility of
using the binary black hole merger events detected by Advanced LIGO/Virgo to test the relation
between the source’s energy emission and the gravitational memory measured on earth, as predicted
by General Relativity. We find that while it is difficult for Advanced LIGO/Virgo, one-year detec-
tion of a third-generation detector network will easily rule out the hypothesis assuming isotropic
memory distribution. In addition, we construct a phenomenological model for memory waveforms
of binary neutron star mergers, and use it to address the detectability of memory from these events
in the third-generation detector era. We find that measuring gravitational memory from neutron
star mergers is a possible way to distinguish between different neutron star equation of state.

Introduction. With the recent detection of a bi-
nary neutron star (BNS) merger using both gravitational
wave (GW) and electromagnetic telescopes [1–3], we are
quickly entering the era of multi-messenger astronomy
with GWs. Future GW observations will provide un-
precedented opportunies to uncover physical information
of those most compact, exotic objects (such as black holes
and neutron stars) in our universe. Moreover, future de-
tections will open an independent window to study cos-
mology [4, 5], and will be used to test various predic-
tions of General Relativity [6–8], such as the gravitational
memory effect [9–12].

Gravitational memory is an observable phenomenon of
the spacetime. Conceptually, it can be classified into or-
dinary memory, which is due to the change of quadrupole
moment for slowly-moving sources, and null memory [50]
that comes from null fields propagating to null infinity
[13, 14]. Similarly the analog of gravitational memory has
also been found in Maxwell theory [15]. The GW mem-
ory has a direct relationship with soft-graviton charges
at null infinity [16] (also see developments in Maxwell
theory [17, 18]), which have quantum gravity partners.
These partners may play a key role in solving the Black
Hole Information Paradox [19, 20]. The memory effect is
probably one of the few macroscopic, astrophysical ob-
servables that could be traced back to a quantum gravity
origin (another example is “echoes from black hole hori-
zon” [21]). Studying such classical observables is interest-
ing because observational signatures of quantum gravity
are normally expected at Planck scale.

The detectability of the displacement memory effect
using ground, spaced-based detectors and pulsar-timing
arrays has been discussed extensively in the literature
[22–29]. In addition, understanding and verifying the
relations between memory effects and associated en-

ergy/angular momentum emissions from the source is
equally important, as these relations display striking sim-
ilarities to Weinberg’s soft-graviton theorem [30]. They
have been written in various forms in different context.
In this work we adopt the form suitable to describe the
null displacement memory generated by GW energy flux
[22]:

h
TT(mem)
jk (Td) =

4

d

∫ Td

−∞
dt′
[∫

dEGW

dt′dΩ′
n′jn

′
k

1− n′ ·N
dΩ′
]TT

,

(1)

where Td is the time of detection, h
TT(mem)
jk is the memory

part of the metric in transverse-traceless gauge, dE
GW

dt′dΩ′ is
the GW energy flux, n′ is its unit radial vector and N
is the unit vector connecting the source and the observer
(with distance d).

We propose to use binary black hole (BBH) merger
events to test the validity of Eq. (1). For any single event,
a network of detectors is able to approximately determine
its sky location and the intrinsic source parameters such
as black hole masses, spins, and the orbital inclination
by applying parameter estimation algorithms. The dis-
placement memory effect, being much weaker than the
oscillatory part of the GW signal, can also be extracted
using the matched-filter method. By computing the GW
energy with source parameters within the range deter-
mined by parameter estimation, we can obtain the value
of the right-hand side of Eq. (1) and compare it with
the measured displacement memory. Multiple events are
need to accumulate statistical significance for such a test
[31, 32].

As an astrophysical application for gravitational mem-
ory, we also examine the memory generated by BNS
mergers with a simple, semi-analytical memory waveform
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model. This memory waveform has a part that is sensi-
tive to the star’s equation of state (EOS) and post-merger
GW emissions. Therefore we are able to study the possi-
bility of using memory detection to distinguish different
NS EOS in the era of third-generation detectors.

Memory distribution. For BBH mergers at cosmolog-
ical distances, the memory contribution can be well ap-
proximated by [25, 33] [51] [52]:

h
(mem)
+ =

ηMz

384πd
sin2 ι(17 + cos2 ι)hmem(Td) , (2)

where M = m1 + m2 is the total mass of the binary, z
is the redshift, Mz = M(1 + z) is the redshifted total
mass, η = m1m2/M

2 is the symmetric mass ratio, ι is
the inclination angle of the orbit. The posterior distri-
bution of these source parameters can be reconstructed
by performing Markov-Chain Monte-Carlo parameter es-
timation for each event. hmem can be well modelled by
the minimal-waveform model discussed in [25]. The an-
gular dependence shown in Eq. (2) encodes critical in-
formation about the memory generation described by
Eq. (1). It is maximized for edge-on binaries, which
is different from the dominant oscillatory signals with
h+ ∝ (1 + cos2 ι), h× ∝ cos ι dependence. In this work,
we test the consistency of Eq. (2) with future GW de-
tections as a way to test the memory generation formula
Eq. (1). In particular, we test the ι-angle dependence
[53] by formulating this problem in a Bayesian model se-
lection framework.

Model test. We consider two hypotheses, with H1 re-
sembling Eq. (2) and H2 describing an isotropic memory
distribution in the source frame:

H1 : h
(mem)
+ =

ηMz

384πd
sin2 ι(17 + cos2 ι)hmem(Td) ≡ hm1 ,

H2 : h
(mem)
+ =

ηMz

96πd

√
3086

315
hmem(Td) ≡ hm2 , (3)

where the numerical coefficient of h
(mem)
+ in H2 is cho-

sen such that the (source) sky-averaged SNR2 (signal-to-
noise ratio) is the same for these two hypotheses. For
each detected BBH merger event, the source parameters
are described by

θa = (lnMz, ln η, χA, tc, φc, ln d, α, δ, ψ, ι) , (4)

where Mz ≡ Mzη
3/5 is the redshifted chirp mass, χ ≡

(m1χ1 + m2χ2)/M is the effective spin parameter [34]
with χA representing the dimensionless spin of the Ath
body, tc and φc are the coalescence time and phase, α, δ
and ψ are the right ascension, declination and polariza-
tion angle in the Earth fixed frame. Given a data stream
y, to perform the hypothesis test, we evaluate the Bayes
factor

B12 =
P (y|H1)

P (y|H2)
. (5)

In addition, the evidence P (y|Hi) is

P (y|Hi) =

∫
dθaP (θa|Hi)P (y|θaHi) , (6)

where the prior P (θa|Hi) is the prior distribution of θa

which is set to be flat, and the likelihood function is given
by

logP (y|θaHi) ∝ −2

∫
df
|y − hIMR − hmi|2

Sn(f)

≡ −||y − hIMR − hmi||2

2
, (7)

with hIMR the inspiral-merger-ringdown waveform and
Sn the single-side detector noise spectrum. Both hIMR

and hmi (cf. Eq. (3)) are functions of {θa}. According to
the derivation in the Supplementary Material, after per-
forming the integration in Eq. (6), the log of this Bayes
factor can be approximated by

logB12 ≈−
1

2
||y − hIMR(θ̂)− εhm1(θ̂)||2

+
1

2
||y − hIMR(θ̂)− εhm2(θ̂)||2 . (8)

Here {θ̂a} are the Maximum Likelihood Estimators for
{θa} using the IMR waveform template (PhenomB [34]
is adopted in this work). Similar to [31, 32, 35], we de-
note the distribution of logB12 in Eq. (8) as foreground
or background distributions, assuming hypothesis 1 or 2
is true respectively. Given a detected event, these fore-
ground and background distributions can be used to ob-
tain the detection efficiency Pd and the false alarm rate
Pf [31, 32, 35]. Given an underlying set of source param-
eters θ0 = {θa0}, the false alarm rate can be obtained if
the detection efficiency is known. In this work we follow
the convention in [36] and choose Pd = 50%.

For multiple events with data stream {y(i)}, the com-
bined Bayes factor is

B12 =
∏
i

P (y(i)|H1)

P (y(i)|H2)
, (9)

and the above discussion generalizes trivially because
these events are independent. It turns out that, if we
define SNR50%

eff such that

P 50%
f =

1√
2π

∫ ∞
SNR50%

eff

e−x
2/2 dx , (10)

this effective SNR is given by

SNR50%
eff =

∑
i ||h

(i)
m2(θ0)− h(i)

m1(θ0)||2i
σ

, (11)

with

σ2 =
∑
i

{
||h(i)

m2(θ0)− h(i)
m1(θ0)||2i +A(i)

a (Γ
(i)
ab

−1
)A

(i)
b

}
,

Γ
(i)
ab = 〈∂θah(i)

IMR|∂θbh
(i)
IMR〉i ,

A(i)
a = 〈∂θah(i)

m1|h
(i)
m1(θ0)− h(i)

m2(θ0)〉i , (12)
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FIG. 1: Left panel: The distribution of the combined SNR of the gravitational memory for all events with expected memory
SNR greater than 0.1, following a five-year observation period with a network of GW detectors containing Advanced LIGO
(Livingston and Hanford) and Advanced Virgo at design sensitivities. As a comparison, we also plot the combined SNRs for
the same set of events assuming third-generation detectors with a one-year observation period. The red dashed line highlights
one commonly used detection threshold. Right panel: The inferred SNR50%

eff for distinguishing the two hypotheses in Eq. (3)
for the same set of detectors and with the same period of observation.

and the inner product is defined as

〈ψ|χ〉i ≡ 2

∫
df
ψ(f)χ∗(f) + h.c.

Sni(f)
. (13)

The source parameter uncertainties enter into this hy-
pothesis test result through the AΓ−1A-type terms in
Eq. 12. Because of the simplified treatment adopted
in this analysis to save computational costs for simu-
lated data, they are obtained essentially by the Fisher-
Information method (Γ is the Fisher-Information ma-
trix). In principle, the whole procedure can also be per-
formed using Markov-Chain Monte-Carlo method, where
the posterior probability distribution of each parameter
can be more accurately computed.

Monte-Carlo source sampling. In order to investi-
gate the distinguishability between different hypotheses
within a given observation period, we randomly sample
merging BBHs using a uniform merger rate in comov-
ing volume 55Gpc−3yr−1 [37]. The primary mass m1 of
the binary is sampled assuming a probability distribution
p(m1) ∝ m−2.35

1 , where the secondary mass is uniformly
sampled between 5M� and m1. We also require that an
upper total mass cut-off M < 80M� [38]. The effective
spin χA is sampled evenly within |χi| < 1. The right as-
cension, declination, and inclination angles are randomly
sampled assuming uniform distribution on the Earth’s
and source’s sky. We perform 100 Monte-Carlo realiza-
tions, with each realization containing all BNS mergers
within z < 0.5 range (further binary merger events are
too faint for memory detections) for one or five years.

The results of the Monte-Carlo (MC) simulation are
shown in Fig. 1. We assume a detector network with Ad-
vanced LIGO (both Livingston and Hanford sites) and
Advanced Virgo, with all detectors reaching design sen-
sitivity. After five-year observation time, we collect all

events with expected memory SNR above 0.1 for each MC
realization, and compute the corresponding SNR50%

eff as
defined in Eq. (3). With a five-year observation, the me-
dian of this astrophysical distribution locates at ∼ 0.65σ
level, which is insufficient to claim a detection. Therefore
under the current best estimate of merger rate and with
the assumed binary BH mass distribution, during the op-
eration period of Advanced LIGO-Virgo, it is unlikely to
distinguish the (source) sky distribution of the memory
term as depicted by Eq. (1), (2) and an isotropic memory
distribution. In comparison, we apply the Voyager (or
Cosmic Explorer, CE) sensitivity to both LIGO detec-
tors, and the Einstein Telescope (ET) sensitivity to the
Virgo detector, and plot the corresponding SNR in Fig. 1.
This shows that these 3rd-generation detector networks
are fully capable of distinguishing these hypotheses. Our
hypothesis test framework can also be applied to test
against other memory distributions as well, by replacing
the second line of Eq. (3) by the target hypothesis.

We also include the distribution of the combined SNR:

SNRmem =
√∑

i(SNR(i)
mem)2 [54]. This can be achieved

by stacking the memory terms from different events co-
herently, as explained in [23]. Its magnitude roughly re-
flects the strength of the combined memory signal over
noise. Fig. 1 shows that SNRmem ∼ 3 may be achieved
after five-year observation time. Similar SNR has been
claimed in [23] with ∼ 35 GW150914-like events and ran-
domized sky locations, assuming single-detector sensitiv-
ity of Advanced LIGO.

Recovering the angular dependence. With a set of
detections, it is also instructive to reconstruct the poste-
rior angular dependence of memory, which can be com-
pared with its theoretical prediction. Without loss of
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FIG. 2: The 1σ uncertainty (bound by the blue and yel-
low line) of angular dependence f(ι) reconstructed from a
set of simulated events, as indicated by the shaded region.
The green line presents the underlying angular distribution
in Eq. (2). The SNR and ι of simulated events are presented
by the dots in the plot.

generality, we parametrize the memory waveform as

h
(mem)
+ =

17ηMz

384πd
hmem(Td)f({an, bn}, ι) ,

f({an, bn}, ι) =

N∑
n=0

(an sinnι+ bn cosnι) , (14)

where N is the truncation wave number and hmem(Td)
is a normalized Post-Newtonian waveform in the early
inspiral stage. Given a set of observed events yj , one
can obtain the posterior distribution of ai, bi using Bayes
Theorem (a0 = 0):

P ({ai, bi}|{yj}) =
P ({yj}|{ai, bi})P ({ai, bi})

P ({yj})
, (15)

where the detailed expression for the likelihood func-
tion P ({yj}|{ai, bi}) is explained in the Supplementary
Material. In Fig. 2, we simulate observed events (with
SNRm ≥ 1) for a one-year period assuming CE-ET sen-
sitivity. For simplicity, we assume that the memory dis-
tribution respects parity symmetry, such that all the ai’s
are zero. The cutoff N is set to be 4. Based on the pos-
terior distribution of the angular distribution parameter
bi, we compute the reconstructed uncertainty of fι at 1σ
level, as depicted by the shaded area in Fig. 2.

Binary neutron stars. In addition to BBHs, merg-
ing BNSs also generate gravitational memory. How-
ever, given that NS masses are smaller than the typical
BH masses in binaries and that the merger frequency is
outside of the most sensitive band of current detectors,
directly detecting the gravitational memory from BNS
mergers is difficult for second-generation detectors.

Since the BNS waveform (especially the post-merger
part) depends sensitively on the EOS, it is natural to ex-

pect that the detection of memory can be used to distin-
guish between various EOS. To achieve this goal, we have
formulated a minimal-waveform model for BNS mergers
similar to the construction for BBHs (see Supplemen-
tary Material). This model employs the fitting formula
for post-merger waveforms developed in [39] to compute
dEGW/dt (c.f. Eq. (1)) in the post-merger stage, and
a leading-PN description for the energy flux in the in-
spiral stage. For illustration purpose, we also consider
four sample EOS studied in [39]: GNH3, H4, ALF2 and
Sly. Assuming a 1.325M� + 1.325M� BNS system at
distance 50Mpc away from Earth and following the max-
imally emitting direction, the SNRs for detecting these
memory waveforms with Advanced LIGO are all around
0.1, which are insufficient to study the EOS of NSs. On
the other hand, if we assume Cosmic Explorer (CE) sen-
sitivity, the corresponding SNRs will be 10.1, 9.6, 8.9,
and 10.4 respectively.

For third-generation GW detectors such as CE, the in-
spiral waveform of BNS can be used to determine source
parameters (such as ι) to very high accuracies. For
a 1.325M� + 1.325M� BNS system at distance 50Mpc
[55], Fisher analysis suggests that the measurement un-
certainty of ι is of order 10−2. An accurate determina-
tion of source parameters breaks the degeneracy of am-
plitude between different BNS memory waveforms. We
shall compute

SNR∆ab =

√
4

∫ ∞
0

df
|h̃mem

MWM,a − h̃mem
MWM,b|2

Sn,CE
, (16)

as a measure for distinguishability between arbitrary
EOS a and b.

Following [40], if SNR∆ ≤ 1, we consider the two
waveforms indistinguishable. The values listed in Ta-
ble I indicate that measuring gravitational memory is a
possible way to extract information about NS EOS. One
unique advantage of this approach is that it is insensi-
tive to the phases of post-merger modes, as the beating
terms between modes generally contribute kHz modu-
lation of dEGW/dt or hmem, which is outside the most
sensitive band of third-generation detectors [56]. Such
mode phases still contain much more significant theoret-
ical uncertainties than the mode frequencies in current
numerical simulations.

Memory for ejecta. The electromagnetic observation
of GW170817 provides strong evidence for the existence
of multi-component ejecta [41, 42], which could originate

TABLE I: SNR∆ for various EOS.

EOS GNH3 H4 ALF2 Sly

GNH3 0 1.3 5.2 3.8

H4 0 3.9 2.7

ALF2 0 2.3
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from collisions of stars, wind from post-collapse disk [43],
etc. Because of the transient nature, the GWs generated
by ejecta(s) are likely non-oscillatory, and mainly com-
posed of ordinary gravitational memory [44]:

h
TT(mem)
jk = ∆

N∑
A=1

4MA

d
√

1− v2
A

[
vjAv

k
A

1− vA ·N

]TT

. (17)

We shall phenomenologically write the ejecta waveform
as h+ = h0(1 + e−t/τ )−1, with the frequency domain
waveform being iπτ/ sinh(2π2fτ). Here τ character-
izes the duration of the ejection process, and h0 is the
asymptotic magnitude of the memory. Depending on
the angular distribution of ejecta materials, h0 along
the maximally emitting direction can be estimated as
h0 ∼ ∆Mv2/d, where ∆M is the ejecta mass and v is
the characteristic speed. Assuming CE sensitivity, the
SNR of such ejecta waveforms is a plateau for τ ≤ 1ms,
and drops quickly for larger τ . The plateau value roughly
scales as [57]

SNRej ∼ 1.2

(
∆M

0.03M�

)( v

0.3c

)2
(

d

50Mpc

)−1

. (18)

In this case, a detection of the ejecta waveform is only
plausible with information stacked from multiple events,
and/or using detectors that achieve better low frequency
sensitivity [45].

One can apply a similar analysis to the jet of a short
gamma-ray burst [46]. The SNR roughly scales as ∼
0.25(∆Ejet/1051erg)(50Mpc/d), which is likely smaller.
The neutrino radiation, as discussed in [47], can carry en-
ergy up to∼ 1053erg, which could contribute significantly
to the memory if the radiation is sufficiently anisotropic.

Conclusion. We have discussed two aspects of mea-
suring gravitational memory in merging compact binary
systems. BBHs are ideal to test the memory-generation
mechanism, as a way to connect soft-graviton theorem
and symmetry charges of the spacetime to astrophysical
observables. BNSs can be used to distinguish between
different NS EOS, as a complementary way to tidal Love
number measurements in the inspiral waveform and (pos-
sibly) spectroscopy measurements of the post-merger sig-
nal. We have shown that both tasks may be achieved
with the third-generation ground-based detectors.

Because of the 1/f -type scaling of memory wave-
forms, improving the low-frequency sensitivity of detec-
tors is crucial for achieving better memory SNR. This
will be particularly useful for gravitationally probing the
ejecta(s) produced in BNS mergers. Another interesting
direction is to further explore the detectability and appli-
cation of memory in space-based missions, such as LISA
or DECIGO.
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