
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Controlled Fluidization, Mobility, and Clogging in Obstacle
Arrays Using Periodic Perturbations

C. Reichhardt and C. J. O. Reichhardt
Phys. Rev. Lett. 121, 068001 — Published  7 August 2018

DOI: 10.1103/PhysRevLett.121.068001

http://dx.doi.org/10.1103/PhysRevLett.121.068001


Controlled Fluidization, Mobility and Clogging in Obstacle Arrays Using Periodic

Perturbations

C. Reichhardt and C.J.O. Reichhardt
Theoretical Division and Center for Nonlinear Studies,

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Dated: June 25, 2018)

We show that the clogging susceptibility and flow of particles moving through a random obstacle
array can be controlled with a transverse or longitudinal ac drive. The flow rate can vary over
several orders of magnitude, and we find both an optimal frequency and an optimal amplitude of
driving that maximizes the flow. For dense arrays, at low ac frequencies a heterogeneous creeping
clogged phase appears in which rearrangements between different clogged configurations occur. At
intermediate frequencies a high mobility fluidized state forms, and at high frequencies the system
reenters a heterogeneous frozen clogged state. These results provide a technique for optimizing flow
through heterogeneous media that could also serve as the basis for a particle separation method.

Particle transport through heterogeneous media is rel-
evant to flows in porous media [1, 2], transport of col-
loidal particles on ordered or disordered substrates [3–7],
clogging phenomena [8–13], filtration [14–16], and active
matter motion in disordered environments [17–20]. It
also has similarities to systems that exhibit depinning
phenomena when driven over random or ordered sub-
strates [21]. Recent work has focused on clogging ef-
fects for particle motion through obstacle arrays, where
the onset of clogging is characterized by the formation of
a heterogeneously dense state [11–13]. Such clogging is
relevant for the performance of filters or for limiting the
amount of flow through disordered media, so understand-
ing how to avoid clog formation or how to optimize the
particle mobility in obstacle arrays is highly desirable.
Clogging also occurs for particle flow through hoppers
or constrictions, where there can be a transition from a
flowing to a clogged state as the aperture size decreases
[22–26]. The clogging susceptibility in such systems can
be reduced with periodic perturbations or vibrations [27–
29]. Applied perturbations generally produce enhanced
flows in disordered systems [30–34]; however, there are
examples where the addition of perturbations or noise
can decrease the flow or induce jamming, such as the
freezing by heating phenomenon [26, 35, 36] or the ap-
pearance of a reentrant high viscosity state in vibrated
granular matter [37]. A natural question is whether clog-
ging and mobility for particle flows through obstacles can
be controlled or optimized with applied perturbations in
the same way as hopper flow. It is also possible to have
transverse shaking in hopper geometries [34] and it would
be interesting to understand how transverse and longitu-
dinal ac drives can control the flow in two-dimensional
(2D) disordered obstacle arrays, where one type of shak-
ing may be more effective than the other.

In this work we numerically examine particle flow
through a disordered obstacle array where the particles
experience both a dc drive and ac shaking. In the ab-
sence of the ac shaking, this system exhibits a well de-
fined clogging transition at a critical obstacle density φdc

c

as identified in previous work [12] for dc driven disks in
obstacle arrays. The clogged states exhibit strong spatial
heterogeneity, and φdc

c remains roughly constant until the
disk density approaches the jamming or crystallization
density [12]. The previous work focused on the transi-
tion to a completely immobile state and the distinction
between jamming and clogging behavior. In the present
work we measure the disk mobility when a transverse or
longitudinal ac drive is added to the system for obstacle
densities above φdc

c , where the ac drive serves to unclog
the system. We find that the mobility drops back to zero
above a critical obstacle density φac

c that depends on the
frequency and amplitude of the ac drive. We identify an
optimal ac frequency and amplitude that optimizes the
mobility. At low frequencies, the system forms a nearly
immobile heterogeneous creeping clogged state, while for
intermediate frequencies a more uniform flowing fluidized
state appears and at high frequencies a heterogeneous
frozen clogged state emerges that resembles the clogged
state under zero ac drive. These results indicate how to
control the mobility of particles flowing through random
disorder by applying dc and transverse or longitudinal
ac drives to systems such as granular matter, colloids,
or emulsions. Similar driving protocols could be used
for particles with longer range interactions such as su-
perconducting vortices, skyrmions, or charged colloids in
disordered media to identify ac driving frequencies that
optimize the flow.

Simulation and System— We simulate a 2D system of
non-overlapping repulsive particles in the form of disks
interacting with a random array of obstacles in the form
of posts, where the particles are subjected to a dc drift
force and an ac shaking force. The sample is of size L×L
with L = 100 and we impose periodic boundary condi-
tions in the x and y directions. Interactions between
pairs of disks i and j are given by the repulsive harmonic
force F

ij
dd = k(rij − 2Rd)Θ(rij − 2Rd)r̂ij , where the disk

radius Rd = 0.5, rij = |ri − rj |, r̂ij = (ri − rj)/rij ,
and Θ is the Heaviside step function. The spring stiff-
ness k = 200 is large enough that disks overlap by less



2

than one percent, placing us in the hard disk limit as
confirmed by previous works [11, 12, 38]. The obsta-
cles are modeled as immobile disks with the same ra-
dius and disk-disk interactions as the mobile particles.
There are Nm mobile particles with an area coverage of
φm = NmπR2

d/L
2, while the area coverage of theNobs ob-

stacles is φobs = NobsπR
2

d/L
2 and the total area coverage

is φtot = φm + φobs. For monodisperse disks the system
forms a triangular solid at φtot = 0.9 [38]. The obsta-
cles are placed in a dense lattice and randomly diluted
until the desired φobs is reached, so that the minimum
spacing between obstacle centers is dmin = 2.0. The par-
ticle dynamics are governed by the following overdamped
equation of motion: ηdri/dt = Fi

inter
+Fi

obs
+Fdc+Fac.

Here Fi
inter

=
∑Nm

j=0
F

ij
dd are the particle-particle interac-

tions, Fi
obs

=
∑Nobs

k=0
Fik

dd are the particle-obstacle inter-
actions, and Fdc = Fdcx̂ is the dc drift force applied in
the positive x-direction, where Fdc = 0.05. Each sim-
ulation time step is of size dt = 0.002, and η = 1.0.
Distances (forces) are measured in units of l0 (f0) time
is in units of τ0 = ηl0/f0. We apply a sinusoidal ac drive
that is either transverse, Fac = F⊥

acŷ, or longitudinal,

Fac = F
||
acx̂, to the dc drive. We measure the time aver-

age of the velocity per particle in the dc drift direction,
〈Vx〉 = N−1

m

∑Nm

i=1
vi · x̂, where vi is the velocity of par-

ticle i. We define the mobility as M = 〈Vx〉/〈V 0
x 〉, where

〈V 0
x 〉 is the obstacle-free drift velocity, so that in the free

flow limit, M = 1.0. After the drive is applied, there
is a transient time during which the mobilities settle to
a stationary state, so we wait 107 simulation time steps,
longer than any of the transient times, before taking mea-
surements. Our results are robust for varied system size,
except that in very small samples (L ≤ 20), particles are
more likely to become trapped in periodic orbits, giving
higher mobilities.

Results – In Fig. 1(a) we illustrate the positions of the
particles and obstacles in a steady state with Fdc = 0.05,
φtot = 0.275, and φobs = 0.1256 under a transverse drive
F⊥
ac = 0.5 in the low frequency limit of ω = 10−7, where

the mobility is very small, M = 0.01. The particles as-
semble into high density clogged regions separated by
large void areas. There are slow particle rearrangements
but little net motion in the dc drift direction, so the sys-
tem is effectively transitioning between different clogged
configurations. At ω = 10−4 in Fig. 1(b), the mobil-
ity reaches its maximum value of M = 0.27. In this
partially fluidized state, the clustering is reduced com-
pared to lower frequencies. For the high frequency of
ω = 10−1 in Fig. 1(c), a completely frozen clogged state
with M = 0 appears. In Fig. 1(d), when ω = 10−1 but
the obstacle density is reduced to φobs = 0.047, we find
a flowing state.

In Fig. 2(a) we plot M versus obstacle density φobs

for a system with φtot = 0.275 for zero ac drive and for
ω = 10−4 ac drives that are transverse, F⊥

ac = 0.5, or
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FIG. 1: Locations of particles (red) and obstacles (blue) for
a system with φtot = 0.275 and an x-direction drift force of
Fdc = 0.05 under a transverse ac drive of magnitude F⊥

ac = 0.5
for different ac frequencies ω. (a) A low mobility creeping
clogged state with M = 0.01 at ω = 10−7 and φobs = 0.1256.
(b) A high mobility fluidized state with M = 0.27 at ω = 10−4

and φobs = 0.1256. (c) A frozen clogged state with M = 0 at
ω = 10−1 and φobs = 0.1256. (d) A flowing state at ω = 10−1

and φobs = 0.047.

longitudinal, F
||
ac = 0.5. A clogged state with M = 0

appears for φtot > 0.115 under no ac drive, for φtot > 0.2
under transverse ac driving, and for φtot > 0.155 under
longitudinal driving. For φobs < 0.07, M is lowest un-
der the transverse ac drive. In the inset of Fig. 3(a) we
plot a dynamic phase diagram as a function of φobs ver-
sus φtot indicating the clogging transition lines φdc

c for
zero ac drive and φac

c for F⊥
ac = 0.275 and ω = 10−4. In

the area between the two lines, the ac drive unclogs the
system. At high φtot, both thresholds decrease upon ap-
proaching the crystallization or jamming transition near
φtot = 0.9. Figure 1(a,b,c) shows the ac unclogged region
at φtot = 0.275 and φobs = 0.1256, while Fig. 1(d) shows
a region that is always unclogged. The extent of the ac
unclogged region depends on the ac frequency, and at
the highest frequencies it decreases in width until both
clogging curves coincide.

In Fig. 2(b) we plot M versus ac frequency ω for
the system from Fig. 1(a–c) with φtot = 0.275 and
φobs = 0.1256 for transverse and longitudinal ac driving
of magnitude Fac = 0.5. We find a low mobility state for
ω < 10−6 and a zero mobility state for ω ≥ 10−2. The op-
timal mobility occurs at ω ≈ 2.5× 10−4. Both directions
of ac driving produce the same dynamic states, but lon-
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FIG. 2: (a) Mobility M vs obstacle density φobs for φtot =

0.275 at F⊥
ac = F

||
ac = 0 (pink), where M = 0 for φobs > 0.115;

at F⊥
ac = 0.5 and ω = 10−4 (blue), where M ≈ 0 for φobs >

0.195; and at F
||
ac = 0.5 and ω = 10−4 (green), where M ≈ 0

for φobs > 0.155. (b) M vs ac frequency ω for the system in
Fig. 1(a–c) at φtot = 0.275, φobs = 0.1256, and Fac = 0.5 for
transverse (pink circles) and longitudinal (blue squares) ac
driving showing a clogged state at low and high frequencies
and an intermediate frequency flowing state. The letters a,
b, c mark the frequencies at which the images in Fig. 1(a–
c) were obtained. (c) M vs F⊥

ac for the system in (b) under
transverse driving with ω = 10−4 (blue), 10−3 (green), 10−2

(gold), and 10−1 (red). (d) M vs F
||
ac at the same frequencies

as in (c) under longitudinal driving.

gitudinal driving gives a narrower window of unclogged
states and a substantially lower value of M . Addition-
ally, the low frequency states with ω < 10−5 are fully
clogged with M = 0 for longitudinal driving, but have a
small finite mobility for transverse driving. These results
show that there are two different types of clogged states
separated by an intermediate fluidized state in which the
mobility reaches its optimum value. Figure 2(b) also in-
dicates that the transverse ac drive is more effective at
reducing clogging over a wide range of frequencies.

In Fig. 2(c) we plot M versus F⊥
ac for a system with

φtot = 0.275 and φobs = 0.1256 at the optimal frequency
of ω = 10−4 and at ω = 10−3, 10−2, and 10−1. An
optimal value of F⊥

ac maximizes M at each frequency.

Figure 2(d) shows M versus F
||
ac at the same frequen-

cies. At ω = 10−4, M increases to a local maximum at

F
||
ac = 0.5, and then decreases to M = 0 in the clogged

state for F
||
ac > 1.5. Previous studies of particles mov-

ing over random obstacles under a purely dc drive have
shown that negative differential conductivity or a zero
mobility state can appear at high dc drives [39–42]. We
find a similar effect under large longitudinal ac drives, so

that in general a clogged state appears for high F
||
ac. For

ω = 10−3 in Fig. 2(d), M increases monotonically with
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FIG. 3: (a) M vs φtot for φobs = 0.1256 and F⊥
ac = 0.5 at

ω = 5.0 × 10−6 (blue squares), 10−4 (green circles), 10−2

(pink diamonds) and 10−1 (magenta triangles). M is largest
for ω = 10−4. Inset: dynamic phase diagram as a function
of φobs vs φtot. Circles: φdc

c ; squares: φac

c for F⊥
ac = 0.5

and ω = 10−4. Yellow: flowing state. Blue: clogged state.
Green: ac unclogged state. The letters a to d indicate the
points where the images in Fig. 1(a-d) were obtained. (b)
M vs φtot in the same system for transverse (green circles)
and longitudinal (red squares) ac driving at ω = 10−4. M is
largest for transverse ac driving.

F
||
ac; however, for much larger F

||
ac (not shown), M de-

creases again. Transverse ac driving generally produces
higher M by permitting the particles to move around ob-
stacles, whereas longitudinal ac driving pushes the par-
ticles toward the obstacles and reduces M .

In Fig. 3(a) we plot M versus φtot for samples with
φobs = 0.1256 and F⊥

ac = 0.5 at ω = 5.0 × 10−6, 10−4,
10−2, and 10−1. M is always small at low φtot, increases
to a local maximum at φtot = 0.5, and decreases to zero
as φtot approaches φtot = 0.85, the density of the crys-
tallized solid [38, 43]. We find the highest mobility for
ω = 10−4, particularly for 0.66 < φtot < 0.85 where
M ≈ 0 for ω = 10−2 and 10−1. In Fig. 3(b) we show M
versus φtot at ω = 10−4 for transverse and longitudinal
ac driving. A local maximum in M appears at φtot = 0.5,
and M is largest under transverse ac driving for all φtot.
The shape of M matches the clogging behavior of the
phase diagram in the inset of Fig. 3(a). In Fig. 3(a)
we show slices through the phase diagram in the ac un-
clogged region at φobs = 0.1256 and varied φtot, where
the clogging is fragile against application of an ac drive.

In Fig. 4(a) we plot M versus ω in samples with
φtot = 0.275 and F⊥

ac = 0.5 at φobs = 0.00157 to 0.157.
For φobs > 0.1099, the system reaches a fully clogged
state with M = 0. We define the clogging onset φac

c

as the point at which M < 0.02. A local maximum in
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FIG. 4: (a) M vs ω for samples with φtot = 0.275 and F⊥
ac =

0.5 at φobs = 0.00157, 0.031416, 0.047124, 0.062831, 0.07754,
0.09424, 0.1099, 0.1256 [also shown in Fig. 2(b)], 0.14137, and
0.157, from top to bottom. (b) Dynamic phase diagram as a
function of φobs vs ω for F⊥

ac = 0.5. I: flowing fluidized state;
II: creeping clogged state; III: frozen clogged state.

M appears near ω = 2.5 × 10−4 and shifts to slightly
lower frequencies as φobs decreases. A local minimum
near ω = 10−3 develops when φobs < 0.1099, and shifts
to lower frequencies with decreasing φobs. The local ex-
trema are correlated with characteristic length scales.
At the local maximum for φobs = 0.1256, the distance
dτ = ω−1dt(F⊥

ac/
√
2 + Fdc) a particle moves during one

ac cycle matches the average spacing lobs = 1/
√
φobs be-

tween obstacles. As lobs decreases for increasing φobs,
the maximum in M shifts to lower frequencies. The local
minimum for φobs < 0.1099 corresponds to the frequency
at which dτ matches the minimum transverse surface-to-
surface obstacle spacing dmin − 2Rd, where the particles
preferentially collide with the obstacles instead of mov-
ing around them. The two characteristic frequencies are
separated by a factor of 10 since F⊥

ac/Fdc = 10.

Based on the data in Fig. 4(a), in Fig. 4(b) we con-
struct a dynamic phase diagram as a function of φobs

versus ω for samples with F⊥
ac = 0.5 showing phases I

(flowing fluidized state), II (creeping clogged state), and
III (frozen clogged state). For φobs > 0.165, the spacing
between obstacles becomes so small that the system is in
a frozen state for all values of ω. The fluidized state is
of maximum extent between ω = 10−5 and ω = 10−4.
At higher φtot the ac drive unclogs the system, while at
lower φtot in phase I, the lower mobility regimes are a
vestige of the high and low frequency clogging behaviors
from phases II and III. Longitudinal ac driving produces
similar dynamic phases except the extent of phase I is
reduced.

Our results are similar to recent experiments on the

viscosity of vibrated granular matter, where there is
a jammed state at low frequencies, a low viscosity
fluid state at intermediate frequencies, and a reentrant
jammed state at high frequencies [37]. Other granular
studies have found optimal frequencies for dynamic res-
onances, where the speed of sound is minimized at inter-
mediate frequencies when the grains are the least jammed
[44].

Summary—We examine the clogging and flow of parti-
cles through random obstacle arrays under a dc drift and
a transverse or longitudinal ac drive. At zero ac driving,
the system clogs above a well defined obstacle density.
When ac driving is added, the clogging transition shifts to
much higher obstacle densities. For large obstacle densi-
ties, we find a low frequency creeping clogged state where
the particles rearrange from one clogged configuration to
another with nearly zero drift mobility. At intermediate
frequencies, a high mobility fluidized state forms, while
at high frequencies, a zero mobility frozen clogged state
appears, giving an optimal mobility at intermediate fre-
quencies. The mobility is also nonmonotonic when the
ac amplitude is varied at fixed frequency. Transverse
ac driving is generally more effective at increasing the
mobility than longitudinal ac driving. For fixed ac am-
plitude and frequency, the mobility is maximum at an
optimal disk density, while for high disk densities a low
mobility jammed state emerges. At low obstacle densi-
ties the system is always flowing; however, transverse ac
driving produces a resonant frequency with reduced flow
when the transverse oscillations match the minimum ob-
stacle spacing. We map a dynamic phase diagram show-
ing the locations of the flowing, creeping clogged, and
frozen clogged states.

Our results suggest that ac driving could be used to
avoid clogging and optimize particle flows in disordered
media, and offer a technique for particle species sepa-
ration through selective clogging when the species have
different frequency-dependent mobilities. These results
can be generalized for controlling flows in a wide class of
collectively interacting particle systems in heterogeneous
environments, including colloids, bubbles, granular mat-
ter, vortices in superconductors, and skyrmions in chiral
magnets.

This work was carried out under the auspices of the
NNSA of the U.S. DoE at LANL under Contract No. DE-
AC52-06NA25396 and through the LANL/LDRD pro-
gram.
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