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The ground state of two-dimensional (2D) electron systems with equal low densities of electrons
and holes in nearby layers is an exciton fluid. We show that a reservoir for excitons can be established
by contacting the two layers separately and maintaining the chemical potential difference at a value
less than the spatially indirect band gap, thereby avoiding the presence of free carriers in either
layer. Equilibration between the exciton fluid and the contacts proceeds via a process involving
virtual intermediate states in which an unpaired electron or hole virtually occupies a free carrier
state in one of the 2D layers. We derive an approximate relationship between the exciton-contact
equilibration rate and the electrical conductances between the contacts and individual 2D layers
when the contact chemical potentials align with the free-carrier bands, and explain how electrical
measurements can be used to measure thermodynamic properties of the exciton fluids.

PACS numbers: 71.35.-y, 73.21.-b

Introduction.—Excitons are composite bosonic parti-
cles in which conduction band electrons bind with va-
lence band holes. Excitons normally exist as excited
states of semiconductors and insulators, and can have
extremely long lifetimes when the electron and hole are
separated in momentum-space, or in real-space [1], or
both. Bose-Einstein condensation of long-lived excitons
was predicted several decades ago [2], and is thought to
have been realized relatively recently in semiconductor
quantum well [3–7] double-layers. Closely related polari-
ton condensate states, in which longer range coherence
is assisted by the small masses of 2D vertical cavity pho-
tons, are regularly realized and have been studied exten-
sively over the past decade [8–18]. In typical exciton-
condensation experiments a population of electrons and
holes is generated in nearby 2D layers by optical excita-
tion. Free electrons and holes can also be injected elec-
trically if contacts can be established to conduction and
valence bands [19–22]. The electrons and holes then com-
bine to form excitons and the excitonic state is revealed
by photons emitted during the exciton radiative decay
process [23–25]. In this paper we propose and the-
oretically analyze a mechanism that allows direct elec-
trical control of the chemical potential of spatially indi-
rect exciton fluids without populating free electron and
hole states. The mechanism requires substantial exci-
ton binding energies in systems with long electron-hole
recombination times. Our proposal is motivated by the
properties of van der Waals (vdW) heterojunction sys-
tems in which single-layer semiconductors are separated
by hexagonal boron nitride (hBN) barrier layers.

In recent years, 2D transition metal dichalcogenide
(TMD) semiconductors have been established as an ex-
citing exciton physics platform [26–28] in which energy
scales are enhanced by strong Coulomb interactions. Sur-
prising flexibility in the design of optical and electronic
properties can be achieved [29–31] by stacking vdW cou-
pled 2D materials in a variety of different arrangements.
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FIG. 1. (Color online) Schematic illustration of a 2D mate-
rial heterojunction capable of supporting a spatially indirect
exciton condensate, and of an electrode pair that can act as
a reservoir for spatially indirect excitons.

vdW heterojunctions involving 2D semiconductors can
host spatially indirect excitons formed from electrons and
holes in two different layers with binding energies that
remain large, even when the electron and hole layers are
separated by hBN layers that increase exciton lifetimes
by orders of magnitude from the nanosecond range [32–
34] that applies in the absence of spacer layers.

When the chemical potentials of contact electrodes are
inside the energy gaps of the 2D semiconductors, elec-
trons cannot tunnel into double-layer band states. How-
ever, because of the Coulomb interaction and the exciton
binding energy that it produces, correlated pair tunnel-
ing from electrodes connected to the two different lay-
ers is possible. In this Letter, we develop a microscopic
model of this two-particle tunneling process and argue
that it can allow electrode pairs to act directly as exciton
reservoirs with a well-defined chemical potential set by
the source-to-drain bias. Direct exciton reservoirs have
advantages for exciton generation and control over the
commonly employed indirect optical and electrical gen-
eration processes that start by generating free electrons
and holes, and we expect in particular that they will en-
able electrical measurements of the transport properties
of exciton fluids.

Correlated pair tunneling.—We consider the vertically
stacked multilayer heterostructure system illustrated in
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FIG. 2. (Color online) Schematic band diagrams for the
vertical vdW heterostructure systems of interest for the case
of (a) zero applied bias and (b) a finite bias Vb satisfying
indirect gap Eg > eVb > µ0

ex where µ0
ex is the energy of

an isolated spatially indirect exciton. In case (b), the filled
(empty) black circles represents electrons (holes) and the gray
(pink) circle represents a virtual state in the T(B) layer. 1
and 2 label two possible tunneling paths as discussed in detail
in the text.

Fig. 1, which contains a TMD semiconductor double-
layer (DL) with a hBN barrier layer sufficiently thick to
suppress tunneling, and source (S) and drain (D) elec-
trodes that contact the two layers separately. For the
sake of definiteness we have assumed that the electrodes
are formed from graphene sheets instead of metals since
these have less influence on exciton binding energies [35],
but this detail is inessential. Dynamic screening due to
source-drain electron-hole pair excitations is negligible
because of the suppression of source-to-drain tunneling
by the tunnel barrier. We also assume that the top (T)
layer and bottom (B) layer materials are chosen so that
the conduction band minimum and valence band maxi-
mum are respectively above and below but close to the
graphene sheet Dirac point (for example, T=MoS2 and
B=WSe2 [36]) as illustrated in Fig. 2(a). Once the bias
voltage between S and D, µS − µD = eVb, exceeds the
energy needed to create an isolated indirect exciton, an
exciton fluid will form whose equilibrium chemical poten-
tial equals eVb, where e > 0. We discuss the equilibration
process below.

The total Hamiltonian of the four-layer system is

Ĥ = ĤS + ĤD + ĤDL + Ĥt. (1)

where ĤS and ĤD are the linear band Hamiltonians of
the graphene electrodes, and ĤDL is the DL Hamiltonian
including Coulomb interactions. In this paper we assume
that the TMD DL is in its exciton condensate ground
state and ignore its spin degree of freedom. Tunneling
between the electrodes and the double-layer system is
accounted for by

Ĥt =
∑
k,p̄

tSkp̄ ĉ
†
k,T âp̄,S + tDkp̄ ĉ

†
k,B âp̄,D + h.c. (2)

where t
S(D)
kp̄ is a tunneling matrix element. p̄ ≡ (p, λ, τ)

is a compound index that combines the 2D momentum

p, the band index λ = c, v and the valley index τ of the
graphene electrode states. In Eq. (2), â is the creation

operator in the electrodes and ĉ†T (B) is the creation oper-

ator for conduction band electrons in T and valence band
electrons in B. For single-grain hBN tunnel barriers, the
tunneling properties can have very specific momentum
dependence which does not play an essential role and is
not accounted for below, but is sensitive to the relative
orientation of the various 2D material layers [37, 38]. We
neglect interlayer tunneling between the T and B primar-
ily because we are interested in a bias voltage regime in
which free carriers are not present to tunnel. We also
set the interlayer radiative recombination rate to zero in
order to focus on double-electrode reservoir properties.
In practice we anticipate that the interplay between our
exciton reservoirs and interlayer radiative recombination,
whose strength can be adjusted over orders of magnitude
by varying the thickness and orientation of the hBN bar-
rier layer, opens up a rich range of opto-electronic phe-
nomena for study that are a primary motivation for this
work.

The band diagram of the vertical vdW heterostruc-
ture system is shown schematically in Fig. 2. At zero
bias (Fig. 2(a)), we assume that both graphene electrodes
are neutral and that the aligned Dirac points are in the
middle of the spatially indirect band gap Eg. When a
bias voltage in the subgap regime (Eg > eVb > 0) is ap-
plied, tunneling between the electrodes and free-carrier
states in the TMD layers is prohibited by energy conser-
vation. (Note that Eg increases with Vb, and that direct
tunneling of electrons from source to drain is extremely
strongly suppressed because it must navigate three tun-
neling barriers.) Our interest here is in the bias regime
Eg > Vb > µ0

ex, where µ0
ex is the energy of an isolated

spatially indirect exciton. In this bias voltage regime
energy conservation can be achieved by the two-particle
tunneling process illustrated in Fig. 2(b). The state cre-
ated when an electron from S tunnels to a virtual state
in T and a hole from D subsequently tunnels to B has
a finite overlap with an exciton fluid state (path 1). An
alternative and equally possible path is for a hole from
D to tunnel to a virtual state in B first (path 2). Each
tunneling process effectively transfers one electron from
S to D and creates an exciton in the DL. We concen-
trate here on the case of T < Tc for which the excitons
form a condensate, although the main idea of using an
electrode pair as a reservoir for excitons applies equally
well when the excitons form a non-condensed gas. For
the low temperature case we find that because of the
stimulated scattering characteristic of bosonic statistics,
a major fraction of the excitons added or removed from
the system are simply added or removed from the con-
densate.

The condensate state of spatially indirect excitons has
been extensively studied in previous work [39–41] using a
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BCS-like mean field theory approach in which the ground
state is found by minimizing 〈ĤDL−µexN̂ 〉 in the space
of Slater determinant states with coherence between con-
duction and valence bands. Here N̂ =

∑
k(ĉ†k,T ĉk,T +

ĉk,B ĉ
†
k,B)/2 is the total number of electron-hole pairs.

The mean-field Hamiltonian of the exciton condensate
system is

ĤMF
DL = EG +

∑
k

Ek(γ̂†k,0γ̂k,0 − γ̂
†
k,1γ̂k,1) + µexN̂ (3)

where EG is the condensate ground state energy and µex
the exciton chemical potential. The quasiparticle energy

dispersion is Ek =
√

(εTk − µex/2)2 + ∆2
k, where we have

assumed that the DL energy dispersion εTk = −εBk =
~2k2/(2m) + Eg/2 and that the order parameter ∆k is

real. γ̂†k,0 = ukĉ
†
k,T + vkĉ

†
k,B and γ†k,1 = vkĉ

†
k,T − ukĉ

†
k,B

are creation operators for states in the empty and oc-
cupied dressed quasiparticle bands, respectively, and uk
and vk are coherence factors that depend on the pair
potential ∆k which is determined in turn by solving a
self-consistent equation that has solutions only if µex ex-
ceeds µ0

ex [39].
The two-particle tunneling rate can be obtained by ap-

plying Fermi’s golden rule to the second order tunneling
process. We find that the net rate at which excitons are
added to the condensate is

dnex
dt

=
2π

~A
∑
p̄,p̄′

|Mp̄p̄′ |2 (fSp̄ − fDp̄′ )δ(εSp̄ − εDp̄′ − µex) (4)

where fαp̄ , with α = S,D, is the Fermi distribution func-
tion. The matrix element in Eq. (4)

Mp̄p̄′ =
∑
k

ukvkt
S
kp̄t

D∗
kp̄′

{
1

E0
k − εSp̄

+
1

εDp̄′ − E1
k

}
(5)

where E0
k = Ek + µex/2 and E1

k = −E0
k are the energies

required to add quasiparticles of momentum k to bands
0 and 1, respectively. The energy denominators account
for the finite energy cost of hopping to the intermediate
virtual states, and never vanish in the bias voltage range
of interest. The two terms in the matrix element account
for the two tunneling paths depicted in Fig. 2(b).

The evaluation of |Mp̄p̄′ |2 in Eq. (5) requires knowl-
edge of the momentum dependent tunneling amplitudes
tαkp̄. We simplify our calculation by assuming that in-
terfacial disorder plays an important role in determining
the tunneling amplitude. We employ a Gaussian random
tunneling model for which 〈tα(r)〉dis = 0 and the second
order correlation functions satisfy

〈tα(r)tα
′∗(r′)〉dis = |∆t|2F(r − r′)δαα′ , (6)

where 〈· · · 〉dis is the disorder average and F(r − r′) is a
smoothly decaying function of the distance |r − r′|. For
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FIG. 3. Equilibrium electrode densities (a) and exciton den-
sities (b) at different values of β = gXC/gH , where gH is
fixed with its value set by choosing dDL = 1nm. These re-
sults were calculated for dS = dD = dDL spatially indirect
gap Eg(0) = 1.1eV , and exciton binding energy Eb = 0.2eV .
The extended (colored) dashed line represents electrode den-
sities in the case in which the TMD double-layer that hosts
excitons is absent. The vertical gray dashed lines indicates
the threshold voltage at which the dual electrodes establish
a reservoir for excitons. Inset: Threshold voltage as a func-
tion of dS/dDL. The dashed line indicates the zero electrode
density limit of the isolated exciton energy µ0

ex.

low exciton densities and Vb > µ0
ex limit, we obtain the

tunneling current-voltage equation

Iex ≈ Gex(Vb − µex/e). (7)

(µex > µ0
ex at finite exciton density.) The effective ex-

citon tunneling conductance Gex is given approximately
by

Gex =
AgSNg

D
Nnexa

2
B

e2/~
8

ρ0Eb
, (8)

where gSN and gDN are the normal tunneling conductances
per unit area between S and T and between D and B,
respectively, ρ0 is the density of states of quasiparticle
band 0, aB is the Bohr radius, and Eb the exciton binding
energy. The tunneling conductance in Eq. (8) is propor-
tional to the exciton condensate density nex because of
the bosonic stimulated scattering effect. Since the frac-
tion of uncondensed excitons is small in the low den-
sity BEC limit, we have assumed in deriving this simple
result that the contributions from processes with a fi-
nal state exciton outside the condensate are negligible.
Using the typical values gSN = gDN ∼ 10−2e2/h · µm−2,
nexa

2
B ∼ 0.01, and taking the quasiparticle band masses

in the TMD layers close to the bare electron mass, we
estimate that Gex is in the order 10−11e2/h · µm−2.

Eq. (7) states that a time-independent quasi-
equilibrium is reached when eVb = µex. We say quasi-
equilibrium here, rather than simply equilibrium, to em-
phasize that we are assuming that excitons cannot an-
nihilate by radiative recombination. As long as all pro-
cesses in which electrons move between the two TMD lay-
ers are absent, we effectively have an equilibrium problem
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FIG. 4. (Color online) Differential conductance as a function
of (a) x = ωCDL/Ḡex and (b) bias voltage Vb. The dashed
line and the dash-dotted line in (a) shows the linear relation
at low and high frequency limits, respectively.

in which the spatially indirect band gap is tuned electri-
cally by varying Vb. We do not emphasize this distinction
between equilibrium and quasi-equilibrium below.

Electrical characteristics of exciton reservoirs.—
Because of repulsive interactions between excitons, their
chemical potential increases with exciton density [39–41].
For spatially indirect excitons µex = µ0

ex+(gH+gXC)nex,
where gH = e2/CDL = ε/(4πdDL) and gXC are the
Hartree and exchange-correlation contributions to the ef-
fective exciton-exciton interaction. The Hartree term ac-
counts for the capacitive coupling between T and B lay-
ers, whereas gXC , which is density-dependent and cannot
be evaluated exactly, accounts for exchange and corre-
lation effects contributions due to both intralayer and
interlayer Coulombic interactions and therefore also de-
pend on the interlayer spacing dDL. When we add the
potential energy associated with charged electrodes, the
exciton chemical potential in our geometry has an addi-
tional electrostatic contribution:

µex = µ0
ex + (gH + gXC)nex + gHnS (9)

where nS = nD are the equal densities of electrons and
holes in the two electrodes. Eq. (9) can be obtained
by minimizing the total energy, E [nS , nex], with respect
to nex (see Supplemental Material [42]). By minimiz-
ing E [nS , nex] with respect to nS we obtain the following
expression for the bias potential,

nex
CDL

+ nS

(
2~v
√

2π

e2
√
|nS |

+
1

Cgeo

)
=
Vb
e
. (10)

In Eq. (10), Cgeo = ε/(4πe2dtot) is the geometric capac-
itance and dtot = dS + dDL + dD; the energy function
used to derive Eq. (10) does not account for exchange
and correlation in the electrodes, i.e. for interaction cor-
rections to the electrode quantum capacitance, but these
can easily be added when relevant. A time-independent
equilibrium between the electrodes and the exciton fluid
is established when nex 6= 0 and electron-hole pairs have

the same chemical potential in either environment i.e.
when and eVb = µex.

Fig. 3 shows equilibrium densities calculated for several
typical values of the dimensionless exchange-correlation
coupling strength β ≡ gXC/gH . Below we take β as an
unknown parameter and show that its value can be mea-
sured electrically. When estimated using self-consistent
mean-field theory β changes sign from positive to neg-
ative when dDL exceeds around a quarter of an exci-
tonic Bohr radius, and using TMD semiconductor pa-
rameters has the value β = −0.6 for dDL = 1nm in
[41]. Below the threshold voltage Vth, which satisfies
eVth = µ0

ex + gHnS(Vth) and depends on dS/dDL, no
excitons are injected and nS(Vb) is independent of β, as
shown in Fig. 3(a). When Vb > Vth, electrons and holes
can enter the TMD layers by forming excitons via the
two-particle tunneling process. The slope of the nS(Vb)
curve is reduced and becomes negative when β changes
sign from positive to negative. For β < 0, we find that
nS becomes negative when Vb = −µ0

ex/β; we show later
that the dynamic response is anomalous at this point.

The two-particle tunneling rate which we have esti-
mated theoretically can be measured by performing ac
electrical measurements, letting Vb(t) = Vdc + Vac cosωt,
where Vac is small. The linear response of the sys-
tem to Vac can be extracted by linearizing Eq. (7) and
(10) (see details in Supplemental Material [42]). In
Fig. 4 we plot normalized amplitudes of the differen-
tial conductance |dI/dV |/Ḡex, where Ḡex(Vdc) is the
dc exciton conductance Gex. In the low and high fre-
quency limits, the system behaves effectively as a ca-
pacitor with Cefflow = a0CDL, Ceffhigh = a∞CDL, where

γ = (1 + 2Cgeo/CQ)dtot/dDL and a0 = {(γ − 1)2/[(1 +
β)γ − 1] + 1}/γ and a∞ = 1/γ. CQ =

√
2nS/(

√
π~v) is

the quantum capacitance of graphene [43]. dI/dV devi-
ates from linear frequency dependence when the scaled
frequency x = ωCDL/Ḡex ∼ x0 = [(1 + β)γ − 1]/γ.
Measuring the crossover frequency ω0, gives the tunnel-
ing conductance Ḡex = ω0CDL/x0. The dc bias voltage
dependence of the differential conductance is shown in
Fig. 4(b). For β < 0 a peak appears at Vpeak = −E0

ex/β,
the point at which nS reaches 0, as mentioned above.
This suggests a way to measure the exciton exchange-
correlation energy parameter gXC , provided that Eg and
Eb are known. For β > 0, the differential conductance in-
creases slowly with increasing Vb in the regime Vb > Vth.

Optical recombination, which provides a mechanism
for excitons to leak out of the system of interest, can eas-
ily be added to the theory explained here, and in the dc
bias voltage case converts the equilibrium exciton fluid
into a steady state. When the steady state exciton fluid
condenses, it will emit coherent light forming a state sim-
ilar to a polariton laser but subject to precise electrical
control.
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