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This paper uses density functional, dynamical mean field and Landau-theory methods to elu-
cidate the interplay of electronic and structural energetics in the Mott metal-insulator transition.
A Landau-theory free energy is presented that incorporates the electronic energetics, the coupling
of the electronic state to local distortions and the coupling of local distortions to long-wavelength
strains. The theory is applied to Ca2RuO4. The change in lattice energy across the metal-insulator
transition is comparable to the change in electronic energy. Important consequences are a strongly
first order transition, a sensitive dependence of the phase boundary on pressure and that the geo-
metrical constraints on in-plane lattice parameter associated with epitaxial growth on a substrate
typically change the lattice energetics enough to eliminate the metal-insulator transition entirely.
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Many materials exhibit “Mott” metal-insulator transi-
tions, primarily driven by electron-electron interactions1

but also involving changes in atomic positions. In the
rare earth titanates and vanadates, the distortion asso-
ciated with the insulating phase is a GdFeO3-type oc-
tahedral rotation2,3, in the rare earth manganites, it is
an approximately volume-preserving even-parity octahe-
dral distortion4–6: in the perovskite nickelates, a two
sub-lattice disproportionation of the mean Ni-O bond
length7–10 and in VO2 a V-V dimerization11. In other
materials including Ca2RuO4

12 and V2O3
13 the metal-

insulator transition occurs simultaneously with a crystal
symmetry-preserving change of atomic positions. The
association of metal-insulator and structural transitions
suggests the possibility of tuning electronic behavior by
strain14, epitaxial growth, or “nonlinear phononic” ef-
fects arising from intense terahertz radiation15–17.

While electronic aspects of the Mott transition are be-
coming well understood, and energies, forces, and many-
body structural relaxation are now available in beyond
density functional frameworks such as the density func-
tional plus dynamical mean field methodology18–20, the
interplay between the lattice and electronic energetics has
yet to be fully unraveled. A physical basis for interpret-
ing the calculations and the experiments remains to be
defined and the magnitude of the lattice contribution to
the energetics of the transition has yet to be determined.
Here we argue that the key point is that the electronic
transition couples directly to local atomic configurations
such as octahedral rotations and transition metal-oxygen
bond lengths, which in turn couple directly to externally
controllable variables such as strain and pressure. The
response of the material to these stresses defines a lattice
stabilization energy, which can in fact be large enough to
dominate the energetics of the transition.

To quantify these effects we write an electronic free

energy F a(δ ~Q) that depends on a state variable a label-
ing whether the material is in the metallic or insulating
phase, and on atomic coordinates, labelled by a vector

δ ~Q expressing deviations of atomic positions from a ref-

erence configuration. Expanding in δ ~Q we obtain

F a(δ ~Q) = F a
0 + ~Fa · δ ~Q+

1

2
δ ~QT ·Ka · δ ~Q+ ... (1)

The electronic state-dependent linear term ~Fa specifies
the force exerted by the electronic state on the atomic de-

grees of freedom. Typically ~F couples only to a subset of
the lattice degrees of freedom, but this subset is coupled
to other lattice coordinates by the quadratic restoring
term K. The ellipsis represents anharmonic terms which
are not needed for the considerations of this paper but
may be important in other circumstances4,21.

Minimizing the terms written in Eq. 1 gives F = F a
0 −

1
2
~Fa

T
·K−1 · ~Fa defining the stabilization energy

F a
stabil = −1

2
~Fa

T
·K−1 · ~Fa (2)

so that if the lattice is free to relax, the transition be-
tween phases a = 1, 2 will occur when F 1

0 + F 1
stabil =

F 2
0 + F 2

stabil corresponding to a shift in transition point
relative to a frozen lattice calculation and a lattice change

across the transition δ ~Q1 − δ ~Q2 = −K−1
(
~F1 − ~F2

)
.

We now apply these generic considerations to
Ca2RuO4, which exhibits a correlation-driven paramag-
netic metal to paramagnetic insulator transition as the
temperature is decreased below a critical value about
350 K12. The transition is accompanied by a large am-
plitude, symmetry preserving lattice distortion22,23. Be-
low about 140 K there is an onset of anti-ferromagnetic
order22,23, which is not relevant to our present consider-
ations. Ca2RuO4 crystallizes in a Pbca-symmetry struc-
ture with four formula units in each crystallographic unit
cell. The basic structural unit is the Ru-O6 octahedron;
these form corner-shared planes separated from adjacent
Ru-O6 planes by layers involving Ca atoms. The left
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FIG. 1. Left panel: Representation of the unit cell of
Ca2RuO4. Gray balls are ruthenium atoms, red balls oxygen
atoms and blue balls calcium atoms. Right panel: Orbitally
resolved many-body densities of states for structures inter-
polating between experimental 295 K and 400 K structures.
Upper panel: xy orbital; lower panel: yz orbital (xz is very
similar). α = 0 is the 295 K structure; α = 1 is the 400 K
structure; α = 0.4 is in the metallic phase but very close to
the transition point; the α = 0.6, 0.8 spectra are very similar
to the 400 K spectra and are omitted for clarity.

panel of Fig. 1 shows one unit cell with four formula units.
The Pbca structure is derived from the ideal tetrago-
nal n = 1 Ruddlesden-Popper structure by rotations of
the Ru-O6 octahedrons about the apical Ru-O(2) bonds,
tilts of this axis with respect to the Ru-O(1) plane, as
well as an additional distortion that makes the two in-
plane Ru-O bond lengths slightly different. The apical
(Ru-O(2)) and the average over the two in-plane direc-
tions (Ru-O(1)) Ru-O bond lengths are the crucial vari-
ables in the electronic energetics. Their values across
the metal-insulator transition are presented in Table I.
The bond lengths continue to evolve as temperature is
further lowered through the insulating phase22,23. The
corner-shared structure implies that if the rotation an-
gles remain fixed, the Ru-O(1) bond-lengths predict the
average in-plane lattice parameters. Density functional
calculations show that changes in the rotation angles are
negligible for reasonable strains24, so the in-plane Ru-Ru
and Ru-O(1) distances are not independent variables. On
the other hand, the c-axis stacking of the Ruddlesden-
Popper structure means that at fixed c-axis lattice con-
stant, changes in the Ru-O(2) bond length can be accom-
modated by a buckling of the Ca-O planes.

We will be interested here in structures where the c-
axis lattice parameter is relaxed for given values of the
octahedral bond lengths. Thus the lattice degrees of free-
dom in our theory are the average Ru-O(1) and Ru-O(2)
lengths. We parametrize the Ru-O bond lengths in terms
of changes δx, δy, δz with respect to a reference state,
which we take to be the 400 K metallic state, and we
express these in terms of the octahedral coordinates

δQ0 =
1√
3

(δz+δx+δy) δQ3 =
1√
6

(2δz−δx−δy) (3)

which we assemble into the vector δ ~Q = (δQ3, δQ0). K
in Eq. 1 is defined from the dependence of energies on
δQ3 and δQ0, with the c-axis lattice constant relaxed

for each value of δ ~Q. We used density functional plus
U (DFT+U) calculations and observed phonon frequen-
cies (which give energetics of Ru-O bond length changes
without lattice relaxation) to estimate the entries of
K (see supplemental material24), finding K33 = 17.7,
K03 = 7.6, K00 = 46.2 eV/Å2 per formula unit. The
observation25–27 that the changes in optical phonon fre-
quencies across the transition are about 2%, justifies the
harmonic approximation and the independence of K on
the electronic phase.

TABLE I. Experimentally determined apical (Ru-O(2)) and
average in-plane (Ru-O(1)) bond lengths and octahedral dis-
tortions (Eq. 3) in Å at T=295 K [22] and 400 K [23], and
occupancy (per spin per atom) of xy (nxy), and average of yz,
zx (n̄yz/zx) orbitals from DMFT calculation using the exper-
imentally determined lattice structures at each temperature.

RuO(2) RuO(1) δQ0 δQ3 nxy n̄yz/zx

400 K 2.042 1.95 0.0 0.0 0.671 0.665

295 K 1.995 1.99 0.0196 -0.069 0.982 0.508

We now turn to the electronic degrees of freedom. The
relevant frontier electronic states are t2g-derived Ru-4d
oxygen 2p antibonding states which we refer to as Ru d
states, following standard practice28–32. The t2g-derived
bands are well separated from the other bands, so we may
focus our treatment of the correlation problem on them,
treating the other bands as inert30–32. The tetragonal
symmetry splits the t2g-derived triplet into a singlet (dxy)
and a doublet (dxz and dyz). The octahedral rotations
and other distortions (angles ∼ 10◦) provide small addi-
tional rearrangements of the level structure (in particular
lifting the xz/yz degeneracy), but as long as the orbitals
are defined with respect to the local octahedral symmetry
axes, the deviations from the perfectly tetragonal struc-
ture do not significantly affect the on-site level splitting,
basic energetics or assignment of orbital character. Spin-
orbit coupling (λSOC ≈ 0.1 eV ) is important for lower
T magnetic properties of the insulating state27,33,34 but
is not relevant to the physics we consider here since the
spin-orbit energy scales are small compared to the orbital
level splitting and electron interactions.

We have performed DFT and DFT+DMFT calcula-
tions (see supplemental material35). We find, in agree-
ment with previous work30, that a calculation at room
temperature with the experimentally determined 400 K
structure produces a moderately correlated metallic so-
lution while using the 295 K structure produces a Mott
insulator. The metallic state is characterized by an ap-
proximately equal occupancy of the three t2g orbitals.
The approximately equal orbital occupancy is not pro-
tected by any symmetry and is due to the strong electron-
electron scattering. The insulating state is orbitally dis-
proportionated, with an essentially fully filled xy band
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FIG. 2. Electronic energy of correlated bands Eeff = Ecorr−
εaveNtot plotted against a linear combination of octahedral
parameters with λ0 = 0.45 and calculated using DFT+DMFT
for two series of structures: the linearly interpolated struc-
tures between the experimentally observed metallic 400K and
insulating 295K structures (solid points, blue on-line) and a
series obtained by starting from an relaxed insulating struc-
ture with a = b = 5.44 Å and stretching the c-axis (open
symbols, red on-line). The bold dashed black line stands for
the linear fit in eq 4 and the light dashed line shows phase
boundary. The error bars are statistical errors from the Monte
Carlo solution of the DMFT equations.

and half filled, much narrower, xz/yz bands with upper
and lower Hubbard bands separated by a gap (Fig. 1
right panel with blue dashed lines). Calculated orbital
occupancies are given in Table I.

The right-hand panels of Fig. 1 present the orbitally
resolved densities of states obtained from DFT+DMFT
calculations at room temperature, performed for a series
of structures linearly interpolated between the T=295K
(α = 0) and T=400K (α = 1) structures. As the
interpolation parameter α changes from 1 to 0.4, the
state remains metallic but the bands and occupan-
cies (nxy, nxz, nyz) change from ≈ (4/3, 4/3, 4/3) to ≈
(5/3, 7/6, 7/6)). A first order MIT occurs as α is de-
creased below a critical value ≈ 0.4. Further changes of
structure within the insulating phase (α = 0, 0.2) do not
affect the orbital occupancies but do lead to an approx-
imately 0.1 eV shift upward of the xz/yz band relative
to the xy band. We have also performed calculations
in which one starts from the DFT+U relaxed insulat-
ing phase atomic positions with in-plane lattice constants
fixed to 5.44 Å and the c-axis parameter is then gradu-
ally stretched. The results are very similar to the first
group. Although the transition is first order we have not
observed coexistence of metal and insulator phases at any
of the lattice configurations we have studied.

Fig. 2 plots the DFT+DMFT energy of the corre-
lated bands (obtained as described in the supplemen-
tal material35 for interpolated and c-axis stretched struc-

tures) against a linear combination of octahedral param-
eters (Eq. 3).

Eeff =Ecorr − εaveNtot

=E0 −F3(δQ3 − λ0δQ0 − δQc)Θ(δQ3 − λ0δQ0 − δQc)

(4)

Here εave is the orbitally averaged on-site energy from
MLWF fits to the converged DFT band structures;
Ntot = 4, and εaveNtot basically represents the insulating
phase electron energy up to a constant. The particular
linear combination with λ0 = 0.45 is chosen so that the
data from the two different families of structures (which
change the bandwidth and octahedral distortion in differ-
ent proportions) collapses in both insulating and metallic
phases. The dependence on δQ3 reflects the relation be-
tween the octahedral shape and the orbital splitting. The
dependence on δQ0 reflects the change in bandwidth. We
emphasize that the insulating (metallic) state is only sta-
ble for δQ3 − 0.45δQ0 < (>)δQc ≈ −0.04 Å (we expect
δQc depends on U,J). Apart from some rounding in the
immediate vicinity of the transition, the energy is a linear
function of the relevant combination of the structural pa-
rameters, with a difference in slope between phases. The
curvatures ∂2Eeff/∂δQ

2 in two phases are difficult to de-
termine accurately from these calculations but are small
enough compared with the K that any change in the K
across the phase boundary is negligible (details are in the
supplemental material35).

The choice of variables in Fig. 2 fixes the change in
force across the transition as F3 = FI

3 −FM
3 = 2.8 ev/Å

and F0 = FI
0 − FM

0 = −0.45(FI
3 − FM

3 ) = −1.3 ev/Å.
Within the assumptions made here, the dependence of

the insulating phase energy on δ ~Q is essentially indepen-
dent of temperature. However, as temperature is fur-
ther lowered through the paramagnetic insulating phase
to the AFM phase transition, an approximately linear
evolution of the Ru-O bonds lengths is observed22,23,
indicating an approximately T-linear dependence of the
insulating-state force. Linearly extrapolating the Ru-O
bond lengths measured in experiments22,23 at 180, 295
and 350 K to 0 K yields results within 14% of our cal-
culated values. We therefore believe that the single-
site DMFT theory used here is a good representation
of T → 0 K energetics and that the temperature depen-
dence is due to entropic terms arising from a combination
of inter-site effects missing in the single-site approxima-
tion used here, spin orbit effects which change the on-site
multiplet structure and lattice contributions. We model

these effect by a phenomenological linear term in ~F , so

~F =

(
F3

F0

)
(1− 0.0017T [K]) (5)

The consistency of the model can be verified via a
computation of the pressure dependence of the tran-
sition. This is obtained by adding to Eq. 1 a term
+PdV = P 1

4 (abδc + acδb + bcδa) = P (β3δQ3 +
β0δQ0) with (β3, β0) = (−0.3281,−0.1861) ev/(GPa ·
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FIG. 3. Free energy surfaces computed for unconstrained bulk Ca2RuO4 at temperatures 200 K(a), 350 K(b), and 550 K(c).
along with projection of 350K surface onto x-z plane (d). The black dashed line in panels (c) and (d) shows the metal-insulator
phase boundary. The solid and dashed lines show the structural trajectories which the system can explore for films grown
under the epitaxial strain conditions given in the legends. The blue and red regions of the lines indicate insulating and metallic
regions respectively.

Å formula unit), so that applied pressure is in effect
a linear term shifting the position and value of the en-
ergy minimum. We find Pc = 3.6− 0.011T (Gpa) which
is comparable to P exp

c ≈ 2.3 − 0.006T (Gpa) fitted from
published data.36 More details are in the supplemental
material.

In Fig. 3 we plot the free energy landscape at different
temperatures in the plane of Ru-O bond length coordi-

nates δx = 1√
3
δQ0 − 1√

6
δQ3 and δz = 1√

3
δQ0 +

√
6
3 δQ3,

using force terms estimated in eq 5. We chose the metal-
lic state at T > TM−I as the reference. At high tem-
perature, there is no global minimum in the insulating
phase. For T ≤ TM−I , an insulating energy minimum
as in Eq. 2 appears and becomes more stable. The sta-
bilization energy defined in eq 2 is ≈ −0.048 eV/Ru at
TM−I .

We now turn to epitaxially grown films. While epitax-
ial films are strained with respect to bulk, strain is not the
key issue. Rather, the tight association of the in-plane
lattice parameter and the Ru-O(1) bond length means
that epitaxy implies a constraint: instead of freely min-
imizing Eq. 1 over the full space of structural variables,
the system can explore only a one dimensional cut across
the energy landscape, corresponding to a fixed Ru-O(1)
bond length. The solid and dashed lines in Fig. 3 show
the one dimensional cuts which can be explored under
different epitaxy conditions. Because the curves typi-
cally do not pass near the global minimum, the phase
transition becomes much more expensive and in most
cases is eliminated. Only in a small range of compres-
sive strains around −1.0% (relative to 295 K structure)
can a metal-insulator transition occur in a reasonable
temperature range. For a larger compressive strain the
system is always a metal while for a tensile or small com-
pressive strain the material is always an insulator. This

is consistent with recent experimental observations37,38

that thin films of Ca2RuO4 grown epitaxially on NdGaO3

(+0.3% strain) and NSAT (-0.48%) remain insulating up
to 550 K while films grown on NdAlO3 (-3.0%) remain
metallic down to lowest temperature. Only films grown
on LaAlO3 (-1.6%) exhibit a transition to a weakly insu-
lating phase at T ≈ 200 K.

In summary, we demonstrated the importance of lat-
tice energetics in the Mott metal-insulator transition, elu-
cidating the crucial interplay between the local octahe-
dral distortions and long wavelength strains, and the pre-
viously unappreciated role of epitaxial constraints. We
focused on Ca2RuO4, which has two simplifying features:
the metal and insulator have the same symmetry and oc-
tahedral rotations are of minor importance, so the order
parameter couples linearly to strains and the in-plane
Ru-O bond lengths determine the Ru-Ru spacing. Per-
forming a complete DFT+DMFT structural relaxation
study and providing a less phenomenological treatment
of the electronic and, especially, lattice entropies are also
important directions for future research. Most impor-
tantly, a generalization of the theory to cases where oc-
tahedral rotation is important (perovskite titanates and
vanadates) or the insulating phase breaks a translation
symmetry (manganites and nickelates) so that strain cou-
ples via nonlinear terms in the elastic theory, is urgently
needed.
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versity. This research is supported by the Basic En-
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22 M. Braden, G. André, S. Nakatsuji, and Y. Maeno, Phys.

Rev. B 58, 847 (1998).
23 O. Friedt, M. Braden, G. André, P. Adelmann, S. Nakat-
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