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Recent advances in ultra-fast measurement in cold atoms, as well as pump-probe spectroscopy
of K3C60 films, have opened the possibility of rapidly quenching systems of interacting fermions
to, and across, a finite temperature superfluid transition. However determining that a transient
state has approached a second-order critical point is difficult, as standard equilibrium techniques
are inapplicable. We show that the approach to the superfluid critical point in a transient state
may be detected via time-resolved transport measurements, such as the optical conductivity. We
leverage the fact that quenching to the vicinity of the critical point produces a highly time dependent
density of superfluid fluctuations, which affect the conductivity in two ways. Firstly by inelastic
scattering between the fermions and the fluctuations, and secondly by direct conduction through the
fluctuations, with the latter providing a lower resistance current carrying channel. The competition
between these two effects leads to non-monotonic behavior in the time-resolved optical conductivity,
providing a signature of the critical transient state.

Measurement techniques using ultra-fast optics have
enabled the study of fermionic fluids on time scales
far shorter than the timescale of thermalization [1–3].
Similarly, in ultra-cold atomic systems the relaxation
times are long enough that pre-thermalization behavior
may be studied [4–6]. In both cases experimental tech-
niques presently exist to study the collective behavior of
fermions in the period before they have relaxed to their
equilibrium or steady state behavior. As an example, a
transient state with superconducting-like optical proper-
ties was produced by ultra-fast laser stimulation of K3C60

films [7].

However there is a difficulty in determining whether
a transient state is in any sense related to any particu-
lar phase. More precisely one may ask whether a non-
equilibrium system has been taken through the vicinity
of a certain second-order phase transition. For exam-
ple, whether a state with ”superconducting-like” opti-
cal properties is in fact related to the equilibrium super-
conducting phase transition, or whether it is some other
transient state. Equilibrium methods for detecting such
phase transitions such as the specific heat are not appli-
cable to ultra-fast or non-equilibrium settings.

We suggest that this difficulty may be resolved by
looking for signatures of time-dependent fluctuations in
the experimental data. Fluctuations increase in a singu-
lar fashion in the vicinity of a second-order phase tran-
sition, and therefore may be used as a signature that
such a transition has been approached. In particular
we give predictions for time-resolved transport measure-
ments of fermions quenched close to the superfluid criti-
cal point. In the process we generalize theoretical treat-
ments for equilibrium critical systems to the strongly
non-equilibrium regime.

The experimental setup proposed is a gas of fermions,
initially at equilibrium at finite temperature. This may
be a gas of cold atoms in an optical lattice, or electrons in
a thin solid state film. An attractive interaction is turned

on at a certain rate. In the case of cold atoms this may
be achieved by the tuning of optical resonances [8]. For
a thin film, it may be achieved by strong optical pump-
ing of a phonon mode [9–13]. An attractive interaction
causes superfluid fluctuations to develop, leading to two
possibilities. If these fluctuations are sufficiently strong,
then a superfluid order will spontaneously develop, as
happens in equilibrium beyond the critical interaction
strength. The second possibility is that superfluid fluc-
tuations are enhanced, see Fig. 1, but spontaneous long
range order does not develop. Note that the interaction
strength may be instantaneously supercritical, but the
system remains disordered (i.e., no long range order) if
there is not sufficient time for the fluctuations to develop.
In this paper we consider such disordered regimes.

In order to describe the fluctuation physics we must
go beyond time-dependent mean field methods [14, 15].
We develop a quantum kinetic equation, derived within
the two-particle irreducible (2PI) framework [16], which
describes the joint evolution of the unbound fermions
and the superfluid fluctuations. These equations predict
the time-resolved transport properties of the interacting
system. The theory is formally controlled by a param-
eter 1/N which represents the size of the fluctuations.
Our predictions depend on only a small number of pa-
rameters, and do not depend on the precise form of the
fermion-fermion interaction or on the details of the band
structure. Our calculation is valid for a clean system and
only if the fluctuations are not very strong, as given by
a non-equilibrium equivalent of the Ginzburg-Levanyuk
criterion [17] specified below.

The kinetic equations incorporate two scattering pro-
cesses. The first is incoherent Andreev reflection of
fermions off superfluid fluctuations. This leads to an ag-
ing effect where the time-resolved optical conductivity
decreases after the quench with a characteristic power
law. The second scattering process is the binding and
unbinding of fermions into Cooper pairs, leading to the
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FIG. 1. Growth of superfluid fluctuations F (q, t) following
an interaction quench. Fluctuations at several different mo-
menta q are shown. The times are measured in units of T−1

(lower axis) and in terms of ps (upper axis) for T ∼ 100K.
The quantity T/r is the inverse of the detuning from the crit-
ical point, which at equilibrium is equal to F (q = 0). Left:
hard quench from the normal state to T/r = 20. Right: Soft
quench, with r(t > 0) = T [1− (t/t∗)e exp(−t/t∗)], t∗T = 30.
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FIG. 2. Conductivity for the hard quench. Left: Conduc-
tivity σ(t + τ, t) as a function of Tτ for t = 0 (blue) and
t → ∞ (orange). The parameters are Tτr = 5, α = 0.5
and detuning r = 0. In the inset are the tails of σ(t + τ, t),
Tτ > 30, plotted as Tτσ(t + τ, t) to improve visibility. The
curves asymptote to a constant as explained in the main text.
Right: Re [σ(ω, t)− σ(ω, t→∞)] (e2/~) for different times
since the quench. Note the times increase in a geometric fash-
ion. Inset: Reσ(ω, t → ∞). This diverges as logω as ω → 0
so all curves are clipped at ω = .01T

growth in fluctuations after the quench, and to a non-
equilibrium Azlamazov-Larkin-like effect [17], where the
Cooper-pair fluctuations serve as an additional low resis-
tance channel for the current.

The kinetic equations describe the conductivity for ar-
bitrary dependence of the interaction on the time. We
give results for two different quench protocols, ”hard”
and ”soft”. In the hard quench (see left panel Fig. 1)

the interaction is instantaneously changed to be in the
vicinity of the equilibrium phase transition. We show
that there are power-law corrections to the conductivity
at times close to the quench.

We also discuss a soft quench where the interaction is
smoothly switched on and off (see right panel Fig. 1),
which is more applicable to K3C60 films where the tran-
sient state survives for 2-10ps [7]. We find that the opti-
cal conductivity evolves non-monotonically in frequency,
providing a strong signal for time resolved fluctuation
effects and the existence of a transient lower resistance
current carrying channel.

Model and 2PI Formalism

We consider a model with spinful fermions in a poten-
tial (optical or crystal) lattice, without disorder. The
electrons interact via an on-site attractive interaction
U(t), which is allowed to vary with time. In equilibrium,
at temperature T , the critical interaction strength Uc(T )
separates the disordered and superfluid phases.

We employ the 2PI [18] formalism, which generates
equations of motion for two-operator correlations, such
as the fermion Green’s functions. The formalism takes
a single generating functional Γ [·], which we take cor-
responding to the random phase approximation (RPA)
justified by a large-N approximation [19]. The resulting
equations are [20]

g−1◦G =
i

N
(D ·G)◦G; D−1[G] ≡U−1(t)−Π[G], (1)

where Π[G] ≡ iG ·G, ◦ implies convolution, g and G are
the non-interacting and interacting Green’s functions re-
spectively, while D is the propagator of the superfluid
fluctuations, with the equal time Keldysh [21] compo-
nent representing the size of the fluctuations F (q, t) (see
Fig. 1).

The functionals D,Π depend self-consistently on G,
thus Eq. (1) represents a highly non-linear set of equa-
tions. We consider an initial state of free fermions at a
non-zero temperature T .

Fluctuations

In an equilibrium system of fermions, with an attrac-
tive interaction below the critical interaction, the ex-
pectation value 〈∆(~q = 0)〉 vanishes, where ∆†(~q) ≡∑
k c
†
kc
†
q−k is the operator that creates a Cooper pair

of momentum q, and c†k creates a single fermion. How-
ever, superfluid fluctuations Feq(q) defined by Feq(q) ∝
〈|∆†(~q)|2〉 increase as the critical point is approached
(setting kB = ~ = 1),

Feq(q) =
T

v2|q|2/T + r
; vq � T, r � T, (2)
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v being the average Fermi velocity, and the detuning r ∝
Uc(T )−U . Thus the long wavelength fluctuations become
pronounced as r → 0.

The non-equilibrium dynamics are governed by two en-
ergy scales: the temperature T and the detuning from the
critical point r ∝ U−Uc(T ). However, for a system close
to the critical point with T � r the dynamics are essen-
tially classical, as quantum fluctuations are averaged out
on the time scale T−1, but the dynamics occur on the
scale r. Thus the quantum kinetic equation can be re-
duced to a joint kinetic equation for the evolution of the
occupation numbers of the fermions and the distribution
of fluctuations [20].

The dynamics for the fluctuations are,(
∂t + r(t) +

v2|q|2

T

)
F (q, t) = T, (3)

We emphasize that F (q, t) is not given by the instanta-
neous value of r(t), but rather by the full history of r(t).
This yields non-trivial dynamics. Note that if vq & T ,
then the F (q, t) will equilibrate on the short time 1/T .
Thus the non-trivial time dependence is concentrated in
the modes qv � T and it is sufficient to work with them.
Eq. (3) is valid only when F (q = 0, t)� EF /T [20]. This
reduces to the Ginzburg-Levanyuk criterion r � T 2/EF
in equilibrium.

Conductivity

We now discuss methods to detect the aging of su-
perfluid fluctuations. A signature in photo-emission dis-
cussed elsewhere [19], showed that growing fluctuations
lead to a decreasing fermion lifetime, given by a univer-
sal scaling form. Here we discuss the signatures in time-
resolved transport experiments. The transport is studied
by varying the 2PI action, or the quantum kinetic equa-
tions, in response to an external electric field [20].

We begin from the definition of the conductivity J(t) =∫
dt′σ(t, t′)E(t′), where all quantities are constant in

space. There is no single notion of a Fourier transform
in a non time-translation invariant setting, but for the
purposes of demonstration, we study the behavior of the
transform σ(ω, t) =

∫
dτ σ(t+τ, t) exp (−iωτ). Note that

σ(ω, t) depends on the state at times > t, especially at
small ω. In order to quantify the departure from simple
ohmic behavior, we plot the frequency dependent relax-
ation time τDr(ω) = −Im [σ] / [ωReσ]. This is a frequency
independent constant when the conductivity is governed
by the Drude law ∂tJ(t) = −τ−1Dr J(t).

In a fluid without a lattice potential or disorder,
Galilean invariance and conservation of momentum forces
σ(t, t′) ∝ θ(t − t′), so that the current never relaxes.
However the combination of a lattice potential and in-
teraction causes a fraction of the current to relax, even

without disorder or Umpklapp scattering. The dynam-
ics of the momentum decouple from the relaxing current
J [20] which obeys the following equation in d spatial
dimensions [20],

∂tJ(t)− ρ

m̄
E(t) = − 1

τr

(
A(t)J(t)

− α
∫ t

0

dt′
[
B(t, t′)J(t′) +

ρ

2m̄
C(t, t′)E(t′)

])
, (4)

A(t) ≡ T− d
2

∫ t

0

ds
e−

∫ t
s
du r(u)

(t− s)d/2+1
, C(t, s) ≡

∫ s

0

ds′B(t, s′),

(5)

B(t, s)≡ T− d
2

∫ s

0

dt′
(
1 + d

2

)
+ r(t)(t− t′)

(t− t′)d/2+2
e−

∫ t
t′du r(u).

(6)

Above ρ is the density of fermions, m̄ is the average effec-
tive mass, and α, τr are material dependent parameters
related to the extent to which Galilean invariance is bro-
ken. Without loss of generality we set ρ/m̄ = 1.

These equations are the central result of this paper.
They may be solved numerically for an arbitrary r(t) and
electric field, giving the conductivity σ(t, t′). We spend
the remainder of the paper analyzing the implications of
these equations for d = 2.

The equation for the relaxational current J in Eq. (4)
has two components. The A(t) term represents inco-
herent small angle scattering of fermions off of super-
fluid fluctuations. The second term, proportional to α,
is a ”memory” term, which is conceptually similar to the
Azlamazov-Larkin term studied in the theory of equilib-
rium fluctuation superconductivity. It can be understood
as coming from the binding of fermions into long-lived
fluctuating Cooper pairs, which decay at time � T−1.
This term is non-local in time because the dynamics of
the fluctuations are governed by the time scale r−1, which
diverges at the critical point.

An electric field at time t′ directly affects the fluctua-
tions altering the distribution of the Cooper pairs, which
then affect the current at a much later time t. This is the
origin of term C, which only appears because the fluc-
tuations are charged. Thus the kinetic equation is quite
different than for other kinds of critical points, such as
magnetic critical points, where the order parameter is
neutral.

Hard quench and aging

We now seek signatures of criticality in the transient
regime, first considering the hard quench where r(t) & T
for t < 0 and r(t) = r for t > 0. We begin by studying
the fully critical case, r = 0, where the functions A,B,C,



4

0.0 2.5 5.0
log T

0.0

0.5

1.0

1.5
lo

g
(t

+
,t

)/
(

) (logT )/T r
Tt = 0
Tt = 1
Tt = 2
Tt = 5
Tt = 10

0 2
r

0.0

0.1

0.2

r1/
(T

r)
(

,0
)/

(
)r = T/2

r = T/8
r = T/32

0 20
1.0

1.5

(
,0

)/
(

)

FIG. 3. Aging in the limit α = 0 for the hard quench. Left:
Log-Log plot of the ratio σ(t + τ, t) and limt→∞ σ(t + τ, t)
against Tτ . The conductivity is enhanced at early times be-
cause of the absence of superfluid fluctuations. In the case of
t = 0 the ratio converges to (Tτ)γ , where γ = 1/Tτr. Right:
Scaling plot of the σ(τ, 0) at α = 0 for different detunings r.
Inset: unscaled σ(τ, 0). Plots shown for Tτr = 5.

simplify to

A(t) = 1− (Tt)−1, B(t, t′) = (Tt− Tt′)−2 − (Tt)−2,

C(t, t′) = (Tt− Tt′)−1 − T (t+ t′)(Tt)−2. (7)

The conductivity σ(t+τ, t) for these parameters is shown
in Fig. 2. The slow relaxation leads to ”aging” phenom-
ena, where the conductivity approaches its equilibrium
value not on the microscopic time scale T−1, but much
slower, as r−1. In particular at r = 0 the approach is via
scale free power laws. There are two aging effects, one
arising from the dissipative term A(t) which affects the
short time conductivity, and the other due to the Cooper
channel C(t) which affects the long time conductivity.
The effect of the latter is shown in Fig. 2 (left, inset),
where for t → ∞ (orange line), the conductivity decays
with a long tail (∼ τ−1). However the tail is absent for
t = 0 (blue line) as there are no fluctuations at t = 0.

The short time aging is qualitatively different. It arises
because A(t) converges to its equilibrium value as 1/t,
causing the conductivity at short times after the quench
to be larger than its equilibrium value. In particular, at
short times, setting α = 0 in Eq. (4) gives,

σ(t+ τ, t)→Tt�1 e
−τ/τr ; σ(τ, 0) = τ1/Tτre−τ/τr . (8)

This behavior is shown in Fig. 3. The strong power
law amplification, with material dependent exponent,
(Tτr)

−1, is a consequence of the scale free nature of the
r = 0 critical point, and thus provides an example of
critical aging. Since the t = 0 conductivity is enhanced
at short times by the lack of inelastic scattering, but is
suppressed due to the lack of fluctuation conductivity at
long times, the aging is curiously non-monotonic in time
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FIG. 4. Optical conductivity (in e2/~) for the soft quench
with the profile for the detuning r(t) shown in right panel
of Fig. 1. Top panel: Re,Im [σ(ω, t)− σ(ω, t =∞)] = ∆σ
for several values of t and T = 100K. Early times t ≤ 2ps
are shown with dashed lines, later times t > 2ps in full lines.
Lower panel: Drude parameter as a function of time for sev-
eral frequencies.

as seen in Fig. 2 (left panel). In Fourier space, Fig. 2
(right panel), aging manifests as a nearly logarithmic ap-
proach to the long time behavior of Reσ at low frequen-
cies. Overall the dominant effect is a spreading of the
initially very sharp peak in the initial state (due to weak
scattering) to the wider line-shape in the inset. The con-
ductivity is not Drude-like: as a consequence of the τ−1

tail of σ(t + τ, t), Reσ(ω, t → ∞) diverges as logω, as
ω → 0.

We now consider the effect of finite detuning r from the
critical point. The effect of the detuning is to suppress
the aging behavior. This may be seen analytically in the
α = 0 limit, where we find that for rt � 1, σ (τ, 0) →
(T/r)1/Tτr exp(−τ/τr), and the power law amplification
saturates to a constant.

Similar to an equilibrium phase transition, the fact
that the dynamics is controlled by the single diverging
scale r means that the functions B(t, t′) and C(t, t′) can
be expressed as a function of the quantity rt,rt′, and the
function A(t) may be written as A(t) = c + r

T g(rt), for
some order one constant c. As a result of this scaling
behavior, for α � 1, the ratio of short and long time
conductivity is ”universal”,

σ(τ, 0)/ lim
t→∞

σ(t+ τ, t) = r−1/(Tτr)Fs(rτ), (9)

for some scaling function Fs(x). This scaling is demon-
strated in Fig. 3, right panel.

Smooth quench protocols

The hard quench may not accurately describe the be-
havior of pumped K3C60 films. In these experiments, the
effective fermion interactions may vary smoothly on the
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scale T−1, as energy is slowly transferred from the laser
to the active phonon mode, and then to the environment.

Thus we consider a ”soft” quench where r smoothly
decreases to zero and then smoothly increases back to
a large value, sketched in the right panel of Fig. 1 for
the particular choice r(t > 0)/T = 1− (t/t∗)e exp(−t/t∗)
where Tt∗ = 30. We consider the regime where t∗ �
τr � T−1. The time dependent optical conductivity is
shown in Fig. 4 for T = 100K for which t∗ = 2.5ps. The
primary effect seen in the top left panel is a strong dip
in Re∆σ around t ∼ t∗ for low frequencies ω � T , but a
peak at t ∼ t∗ for higher frequencies ω ∼ T . This can be
understood as a spreading of the peak of Reσ, as in the
hard quench. This behavior is accompanied by a peak in
Im∆σ (upper right panel) at low frequencies at t ∼ t∗.

Fig. 4 lower panel shows τDr(t, ω). This parameter
varies strongly with frequency during the quench. This
highly non-Drude behavior may be understood as com-
ing from the two different effects that increasing fluctu-
ations have on the conductivity. The inelastic scattering
effect - the A term - leads to increasing scattering as a
function of time, at high frequencies. The memory ef-
fect - the B and C terms - leads to decreasing scattering
as a function of time, at low frequencies. As these are
sensitive in different ways to the trajectory of r(t), the
total effect is non-monotonic in time. Further the peak in
τDr(t, ω) happens at different times for different frequen-
cies. These non-monotonic behaviors and the dispersion
in frequency are a consequence of slow charged modes,
and therefore a necessary consequence of proximity to a
second order superfluid transition.

Conclusions

We have discussed the effect of non-equilibrium su-
perfluid fluctuations on the conductivity of fermions in
a lattice potential, with applications to cold atoms and
pump-probe experiments. Two primary effects were dis-
cussed, a characteristic aging of the conductivity at short
times, and a power law tail of the conductivity at long
times. The variation of these two effects with detuning
from the critical point, and corresponding signals in fre-
quency space were discussed. A key feature of crossing
a superfluid critical point is a non-monotonic frequency
dependence of the optical conductivity.

Our results generalize to quenches below Tc provided
the transient state is too short-lived for long range order
to develop. However future experiments which manage
to create transient states of a longer duration require
extending the study of optical conductivity to include
coarsening, followed by vortex dynamics, and eventually
the role of strong phase fluctuations. This work provides
a theoretical treatment missing in the current literature
on how to analyze transport in transient superfluids, and
may be generalized to include disorder [22], and explore

hydrodynamic features in other transport properties.
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