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The radiation pressure force on a nearly single order diffraction grating was measured for a
transmission grating near the Littrow angles at wavelengths 808 nm and 447 nm. The component
of force parallel to the grating agreed well with our prediction, being proportional to the product of
grating order and the ratio of the wavelength and grating period. The normal component of force
varied with the incident angle, vanishing near the Littrow angle as expected. The measurements
verify a correspondence between the Fourier grating momentum and the mechanical momentum.
This work provides opportunities for in-space fly-by-light sailcraft as well as terrestrial applications.

Since Maxwell’s first prediction in 1873 [1], radiation
pressure has helped to describe phenomena ranging from
the astronomical to the quantum realm. For example
the gravitational collapse of stars and accretion dynam-
ics are governed by radiation pressure [2, 3]. Experimen-
tal evidence of Kepler’s 1619 explanation of comet tails
[4, 5] was later extended to the general distribution of
interplanetary dust [6, 7]. Terrestial applications have
found uses in biology as optical tweezers [8], laser cool-
ing of atoms[9, 10] and macroscopic objects [11, 12]. The
detection of gravitational waves by means of laser inter-
ferometers requires an accounting of radiation pressure
[13]. Micro-structures such as optical wings [14] and slot
waveguides have promising photonic applications [15, 16].
Thin microfabricated sheets such a diffraction gratings
and diffractive metamaterials [17–23] provide opportuni-
ties to marry recent developments in materials research
with grand ambitions for in-space propulsion and nav-
igation. For example, radiation pressure is one of the
few methods of reaching distant stars with free sunlight
[24, 25] or extraordinarily powerful laser systems [26, 27].

While those sailcraft considered elementary attitude-
controlled reflective sails, optical scientists have recently
proposed passive or active diffractive sails that may pro-
vide superior control authority for near-Earth missions
and beyond [28–30]. Unlike a reflective sail that has only
a normal component of force relative to the surface, a
diffractive sail has both tangential and normal compo-
nents of force. The latter is notable for changing sign,
continuously passing through the zero-value point as the
angle of incidence is varied. Moreover, the large tangen-
tial component of force of a diffractive sail may be par-
ticularly advantageous for raising or lowering the orbit of
a sailcraft[28, 30].

Although the magnitude of radiation pressure may
seem relatively weak owing to its inverse relation to the
speed of light, the force may be comparable to the gravi-
tational force in outer space or in a quasi-neutrally buoy-
ant liquid. The exertion of radiation pressure on a grat-
ing provides both astronautical opportunities to propel
low-areal density sailcraft through space and a new labo-
ratory technique to assert non-contact forces in a liquid.

Light-driven sails being developed for future space travel
afford low-cost and inexhaustible energy for a myriad of
missions [31–34]. Similar to the development of air flight
in the early 1900’s, sailcraft technology is likely to rapidly
advance after in-space demonstrations reveal the extent
of fly-by-light challenges. New materials and sailcraft ar-
chitectures will be perfected to optimize particular mis-
sion objectives. For example, one may question whether
a reflective film such as metal coated mylar is the optimal
means of transferring radiation pressure into a mechani-
cal force or torque. As an alternative, a transmissive or
reflective dielectric diffractive film may provide advan-
tages related to efficiency, mass, heating, and attitude
control. Electro-optics beam steering of a diffractive film
[34] may be preferable to mechanical systems, especially
if the sail area extends over hundreds of square meters.

In this Letter we examine the radiation pressure force
on a fused silica transmission grating that has been op-
timized to diffract light mostly into one dominant order
at the Littrow angle. To satisfy the law of conserva-
tion of momentum, the grating may be expected to react
and move in the direction opposing the diffracted beam.
However, this prediction cannot be made with certainty
for two reasons. First, radiation pressure on a diffraction
grating has apparently never been measured. Second,
light scattering from a structured surface may be com-
plicated by multiple transmitted and reflected diffrac-
tion orders, as well as surface or guided waves that may
randomly scatter from surface roughness, leak, or Bragg
scatter from the periodic structure [35–40]. Experimen-
tation is therefore needed to determine the magnitude
of the force and to verify any theoretical model of the
system.

The radiation pressure force on a non-absorbing grat-
ing may be expressed as the mechanical reaction to opti-
cal diffraction (see Supplemental Material S1[41]):

~F = (Pi/ck)(~ki −
∑
m

ηm~km) (1)

where ηm = Pm/Pi is the efficiency of the mth diffracted
beam, Pi (Pm) is the incident (diffracted) beam power,
energy conservation requires

∑
m ηm = 1, c is the speed
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of light, ~ki (~km) is the incident (diffracted) wave vec-

tor, with k = |~ki| = |~km| = 2π/λ, and λ is the wave-
length of the beam of light. Absorptive heating of less
than 0.02 [K] is expected for our fused silica grating [42]
(see Supplemental Material S2[41]), allowing us to ignore
pressure from re-radiation, convection, and outgassing.
Given specific design and optical properties of the grat-
ing, the values of efficiency may be determined by nu-
merical methods [23, 35–39]. Alternatively, they may be
experimentally determined as described below by mea-
suring the power of the diffracted beams.

FIG. 1: Plane of incidence for a diffraction grating
of period Λ, with respective incident, reflected, and
transmitted angles θi , θr , θt, wave vectors ~ki , ~kr ,
~kt, and grating momentum ~K = (2π/Λ)p̂. For a
single diffraction order the force component parallel
to the grating Fp is constant, whereas the normal
component Fn may be positive, negative, or zero.

A simplified depiction of incident and diffracted beams
for a single diffraction order grating, with corresponding
angles, θi, θt, and θr, is shown in FIG. 1. Phase-matching
of the electromagnetic fields at the grating boundary pro-
vides a relation between the components of the wave vec-
tors that are parallel to the surface:

(~ki +m~K) · p̂ = ~km · p̂ (2)

where ~km is the mth diffraction order (for either the re-
flected or transmitted beam), p̂ (n̂) is the unit vector par-

allel (normal) to the grating surface, and ~K = (2π/Λ)p̂
is the fundamental wave vector associated with the grat-
ing period Λ; it is often called the grating momentum in
Fourier optics (the scaling factor ~ is typically ignored).
The well-known grating equation is a restatement of Eq.
(2): sin θm = − sin θi + mλ/Λ. There is no transmitted
diffracted beam when θm = ±90◦, which corresponds to
a cut-off incidence angle θi,c = sin−1(mλ/Λ ∓ 1). For
example, the incident angle must exceed θi,c = 30◦ if
m = 1, λ = 808 nm, and Λ = 540 nm.

For discussion purposes, let us first consider an ideal
grating having unity transfer efficiency into a single
diffraction order, allowing only an incident wave and ei-
ther a transmitted or reflected wave. The parallel and
normal force components of radiation pressure force may

be respectively expressed by use of Eq.s (1) and (2):

Fp = −(Pi/c)(mλ/Λ) (3a)

Fn = (Pi/c)(cos θi ± (1− (mλ/Λ− sin θi)
2)1/2) (3b)

where the minus (plus) sign is for a transmissive (reflec-
tive) diffraction order, and λ/Λ = K/ki is the ratio of the
grating momentum and photon momentum. The parallel
force ~Fp and m~K are antiparallel as expected from con-
servation of momentum (e.g., see FIG. 1). That is, the

value of ~Fp is directly related to the grating momentum
~K. What is more, Fp is independent of the incident an-
gle θi (assuming of course that the diffraction condition
|θi| > |θi,c| is satisfied). The normal component of force
is positive below the Littrow diffraction angle, defined by
the relation 2 sin θi,L = mλ/Λ. For |θi| > |θi,L| the nor-
mal component of force is negative and the light source
acts as a partial “tractor beam” [43–46]. At the Littrow
angle Fn vanishes.

In practice a grating may diffract multiple orders and
the diffraction efficiency of each may vary with the inci-
dent angle and wavelength. In such cases the expression
of force must account for the momentum imparted by
each grating order, which may be reflective or transmis-
sive in nature (as indicated by r and t subscripts below).
If there is a dominant diffracted order, one may expect
the force on the grating to be similar to the predictions
described above. In general the force components for a
non-absorbing grating may be expressed

Fp = −Pi

c

∑
m

[(ηm,r + ηm,t) (mλ/Λ)] (4a)

Fn =
Pi

c

∑
m

[
ηm,r(cos θi + (1− (mλ/Λ− sin θi)

2)1/2)

+ηm,t(cos θi − (1− (mλ/Λ− sin θi)
2)1/2)

]
(4b)

where ηm,r = Pm,r/Pi and ηm,t = Pm,t/Pi are the effi-
ciencies of the mth order diffracted beams at the wave-
length λ, and

∑
m(ηm,r + ηm,t) = 1 owing to the conser-

vation of energy. The values of efficiency are expected to
change with incidence angle, and thus, both components
of force will vary with angle. A special case exists when
the incident power is arbitrarily split between a trans-
mitted and reflected beam, both of the same order, in
which case Eqs. (3a) and (4a) agree, providing an angle-
independent tangential force. We also note that like Eq.
(3b), Eq. (4b) may in some cases allow a zero-valued
normal force component at a particular incident angle,
resulting in a purely tangential force.

Given the weak magnitude of the expected force F ∼
Pi/c < 5 nN, we chose to measure the components of
force within an evacuated bell jar by use of a custom
built torsion oscillator [47] as depicted in FIG. 2 (see Sup-
plemental Material S3[41]). We selected a commercially
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available single order fused silica transmission grating
having a period Λ = 540 nm. The grating was attached
to the torsion arm in one of two configurations: (A)
with its surface normal parallel to the copper wire; (B)
with its surface normal perpendicular to the copper wire
(see insets of FIG. 2). Separate experiments were per-
formed with different lasers. The first laser (λ = 808 nm,
P0 = 345 mW) provided an efficient first order diffrac-
tion at the Littrow angle. The second laser (λ = 447
nm, P0 = 1.5 W) allowed both a first order and second
order Littrow angle. Weaker diffraction orders were also
detected in both cases. The measured period of free oscil-
lation of the torsion oscillator was T0 = 100.6 s, and the
characteristic decay time (1/α) was roughly 80 T0. Al-
though the output power of the laser was constant, the
power on the grating varied with incident angle owing
to varied Fresnel transmission at the borosilicate bell jar
surfaces. To account for this variability we calculated the
transmission through the bell jar, TA(θi) and TB(θi), for
both configurations (see TABLE I) and determined the
expected power at the grating, e.g., Pi(θi) = T (θi)P0.

FIG. 2: Top view schematic. Torsion oscillator with
moment arm of length R, angular displacement δ,
forcing laser, tracking laser, camera, screen, and
diffraction grating in Configuration A or B.

The diffraction grating was first mounted with its sur-
face normal oriented parallel to the torsion arm, as de-
picted in FIG. 2, Config. A. The grating lines were
transverse to the plane of incidence. With the bell jar
removed, the oscillator was immobilized to allow mea-
surements of the transmitted, diffracted, and reflected
beams with the forcing laser (λ = 808 nm, and linear
polarization transverse to the plane of incidence). The
measured diffraction efficiencies and angles are depicted
in FIG. 3(a) for four different angles of incidence between
30◦ and 60◦ (the incident wave vectors are shown without
arrows). For this range, θi > θi,c and the incident beam
under-filled the grating surface. The corresponding force
components (described below) are shown in FIG. 3(b)
as round black data points. The transmitted first order
diffraction efficiency was expected to be optimal near the

FIG. 3: Measured (a) diffraction efficiencies and
angles, and (b) force components, Fp and Fn, for λ =
808 nm, P0 = 345 mW, and four angles of incidence.
(a) The grating surface (not shown) is aligned along
the 90◦ - 270◦ line. (b) Torsion oscillator
measurements (dark). Predicted values based on
efficiency measurements (white).

Littrow angle θi = 48◦. In fact both the 40◦ and 50◦

incident angles provided measured peak diffraction effi-
ciencies of roughly 60%. The total measured diffracted
power amounted to ∼82% of the input beam power, sug-
gesting that ∼18% of the beam power was diffusely scat-
tered (listed as ηs = Ps/P0 in TABLE I). The scattering
is attributed to power that does not diffract into allowed
orders, but rather directly scatters or couples into guided
waves and subsequently scatters [35–37, 39, 40].

Next we enclosed the oscillator within the bell jar,
evacuated the chamber, and brought the free oscillator
to a near standstill. The forcing laser power was set to
P0 = 345 mW and a mechanical shutter was opened at
time t0 to provide a step function force on the grating, re-
sulting in an angular displacement such as that depicted
in FIG. 4. This procedure was repeated three times for
each of the four incidence angles described above. The
time-varying angular displacement of the tracking laser
upon the screen was extracted and fitted to the well-
known equation for a weakly damped harmonic oscilla-
tor (see Supplemental Material S4[41]), from which we
derived force values for Fp. The excellent agreement be-
tween the experimental data and the oscillator model in
FIG. 4 (typical RMS angular displacement error ∼0.08%)
confirms both the veracity of the harmonic oscillator
model and the high degree of mechanical stability and
repeatability of our apparatus. The determined values of
the tangential force Fp are plotted in FIG. 3(b), showing
good agreement between the values of force that were
measured with the torsion oscillator (dark circles with
error bars) and the values predicted from the measured
diffraction efficiencies using Eq. (4a) (white circles).

To obtain values of the normal component of force we
changed the orientation of the diffraction grating to Con-
fig. B (see FIG. 2) and recorded the laser-driven angular
displacement of the torsion pendulum. The procedure de-
scribed above was used to extract values of Fn, shown in
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FIG. 4: Example of measured and modeled angular
beam displacement: λ=808 nm, P0 = 345 mW,
θi = 40◦. Fitted parameters: shutter release time
t0 = 420 s, parallel force component magnitude
|Fp| = 1.14 nN.

FIG. 3(b) as dark squares with error bars. Again we find
relatively good agreement with the values predicted from
Eq. (4b), shown as white squares in FIG 3(b). As sug-
gested above, the normal component of force is found to
vanish; but unlike the case of a single order grating where
it vanishes at the Littrow angle, here we find Fn = 0 at
θi ∼ 60◦. Discrepancies between the measured values of
force and the values predicted from efficiency measure-
ments may be attributed to non-uniform scattering of the
guided waves, which also assert radiation pressure.

FIG. 5: Diffraction efficiencies and angles, and
radiation pressure at λ = 447 nm, P0 = 1.5 W. (a)
m = 1 set: Measured efficiencies at incident angles
θi near the first order Littrow angle 24◦. (b) m = 2
set: Same as (a) but near the second order Littrow
angle 56◦. (c) Measured (black circles) and
predicted (white circles) values of Fp.

To assess the radiation pressure at a wavelength that
supports two Littrow angles, one at θi = 24◦ for m = 1

and another at 56◦ for m = 2, we substituted a laser
having a wavelength λ = 447 nm and power P0 = 1.5
W. If a single dominant diffraction order is produced at
a given angle of incidence, we expect the value of Fp to
scale with the value of m according to Eq. (3a). To
verify this prediction, we mounted the grating in Con-
fig. A (see Fig. 2). The measured diffraction efficiencies
of the transmitted and reflected beams are depicted in
Fig. 5(a) for angles where there is a dominant first order
beam, and in Fig. 5(b) for angles where there is a dom-
inant second order beam (the incident wave vectors are
shown without arrows). Values of force based on these
efficiency values and Eq. (4a) are depicted as white cir-
cles in Fig. 5(c), whereas those obtained from the torsion
oscillator are shown as black circles. Accounting for the
angle-dependent transmission through the bell jar for the
torsion oscillator experiments (see TABLE I), the aver-
age force efficiency, Fpc/TP0, was 0.99 for the m = 2
set, and 0.46 for the m = 1 set, providing a ratio (2.15)
that was 8% higher than the value (2.00) that would
have been expected for grating producing a single diffrac-
tion order (one near θi = 24◦ and the other near 56◦).
This agreement with the single order approximation is
remarkably good, supporting the direct relationship be-
tween the grating order m and Fp. Discrepancies were
found between the measured forces and those predicted
from the multi-order model (black and white circles in
Fig. 5(c), respectively). The differences, which are more
pronounced than the 808 nm data, may be attributed
to the wavelength dependent scattering and wave guid-
ing. Scattering generally increases as the wavelength de-
creases. In fact the scattered powers listed in TABLE I
are greater at λ = 447 nm than it is at 808 nm.

In summary we have used a vacuum torsion oscilla-
tor in two configurations at λ = 808 nm to measure the
radiation pressure force both normal and parallel to a
diffraction grating of period Λ = 540 nm. The grating
produced a dominant transmitted diffraction order and
a weaker transmitted and reflected order. The measured
forces were qualitatively similar to those predicted for a
grating producing a single diffractive order, and quan-
titatively in agreement with a multi-order model. The
parallel component of force was relatively constant as
the angle of incidence varied, whereas the normal compo-
nent varied with angle, vanishing near the Littrow angle.
An additional experiment at a shorter wavelength (λ =
447 nm) verified that the parallel component of radiation
pressure force scales with the diffraction order, as ex-
pected when a single dominate order is diffracted. Exper-
iments at both wavelengths confirmed that when there is
a dominant diffraction order, the parallel component of
force scales as the ratio of the optical wavelength and
the grating period, λ/Λ – or equivalently, with the ratio
of the grating momentum and wave momentum, K/ki.
That is, the so-called grating momentum, which is a con-
struct from Fourier optics, has been verified to impart
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an equal and opposite mechanical momentum. Unlike a
reflective surface that has only a normal component of
radiation pressure force, a grating has been experimen-
tally demonstrated to provide both normal and tangen-
tial components, thereby affording new opto-mechanical
applications of diffractive films.

λ=808nm, n=1.51 θi 30◦ 40◦ 50◦ 60◦

Config. A TA 0.89 0.87 0.83 0.78

Config. B TB 0.78 0.83 0.87 0.89

Scatter ηs 0.17 0.19 0.13 0.23

λ=447nm, n=1.53 θi 15◦ 25◦ 35◦ 45◦ 55◦ 65◦

Config. A TA 0.9 0.9 0.88 0.85 0.8 0.74

Scatter ηs 0.21 0.33 0.36 0.23 0.29 0.27

TABLE I: Calculated Fresnel transmission
coefficients T (θi) for borosilicate bell jar, and
deduced grating scattering fraction ηs=Ps/P0.
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