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While winding a particle-like excitation around a loop-like excitation yields the celebrated Aharonov-Bohm

phase, we find a distinctive braiding phase in the absence of such mutual winding. In this work, we propose

an exotic particle-loop-loop braiding process, dubbed the Borromean-Rings braiding. In the process, a particle

moves around two unlinked loops, such that its trajectory and the two loops form the Borromean-Rings or

more general Brunnian links. As the particle trajectory does not wind with any of the loops, the resulting

braiding phase is fundamentally different from the Aharonov-Bohm phase. We derive an explicit expression

for the braiding phase in terms of the underlying Milnor’s triple linking number. We also propose Topological

Quantum Field Theories consisting of an AAB-type topological term which realize the braiding statistics.

Introduction—Braiding statistics is a quantum mechanical

phenomenon in which a quantum state acquires a holonomy

when winding an excitation adiabatically around other excita-

tions [1–3]. It arises from the ambiguous weightings for dis-

tinct homotopy classes of trajectories in the Feynman’s path

integral which sums over all continuous paths in the configu-

ration space [4, 5]. Not only is quantum statistics an important

subject in fundamental physics, it is also a crucial data in char-

acterizing topological order in long-range entangled phases of

matter [6–8]. Moreover, braiding statistics has been recently

shown to be a powerful diagnostic of Symmetry-Protected

Topological (SPT) phases [9–13]. By now, braiding statis-

tics in (2+1)D has been thoroughly studied through the braid

group and formulated in the theory of anyons [14–17]. Nev-

ertheless, our understanding of braiding statistics in (3+1)D

is still far from mature. The core reason is that the possi-

ble loop excitations complicate the configuration space in the

path integral. While the simplest particle-particle braiding is

always trivial due to the contractibility of particle trajecto-

ries around the other particle, the possible braiding statistics

is significantly enriched if the spatially extended loop excita-

tions are taken into account. The most well-known example is

the particle-loop braiding statistics in which a particle carried

along a non-contractible cycle around a loop experiences the

Aharonov-Bohm effect [18].

The peculiar braiding phase in the Aharonov-Bohm effect

has been understood to be associated with the winding be-

tween the particle trajectory and the loop [1–3] [Fig. 1(a)].

In this work, we argue that the statistical interaction between

particles and loops can appear in a more general context. We

consider the effect of braiding a particle with more than one

loop. Importantly, we find that there can be a non-trivial braid-

ing phase even without winding the particle around any loop

[Fig. 1(b)]. Particularly, in braiding a particle around two un-

linked loops, a braiding phase appears when the particle tra-

jectory and the loops form a Brunnian link, which is formed

by three mutually unlinked circles. For example, the sim-

plest Brunnian link is the Borromean-Rings link. While the

traditional particle-loop braiding statistics is dictated by the

Hopf linking number L, we show that the particle-loop-loop

(a) (b)

FIG. 1. (Color online) (a) Particle-loop braiding: a particle ei travels

around a loop mi such that the braiding trajectoryγei and mi form

a Hopf link. (b) Borromean-Rings braiding: a particle ek moves

around two unlinked loops mi, mj such that mi, mj and the trajec-

toryγek form the Borromean rings (or generally the Brunnian link).

braiding statistics is instead governed by a higher order link-

ing number, called the Milnor’s triple linking number µ̄ [19].

Physically, braiding statistics involving particles and loops

can be realized in Abelian discrete gauge theories. For exam-

ple, non-trivial particle-loop braiding statistics can be realized

in ZN gauge theory, which describes the deconfined phase

of (3+1)D type-II superconductor with a charge-N conden-

sate [20, 21]. In such a gapped phase of matter, the excitation

spectrum is generated by a particle e and a loop m under fu-

sion, where Ne,Nm are both trivial. Carrying a particle e

in a closed path γe around a loop m leads to the quantized

phase 2π
N
L(m, γe) [Fig. 1(a)]. Recently, more exotic multi-

loop braiding statistics and particle statistical transmutation

have been demonstrated in discrete gauge theories with larger

gauge group G=
∏

i ZNi
[22–36], which is a system of ZNi

gauge theories with a collection of flavors i∈F . In these theo-

ries, the vacuum expectation of any physical braiding process

yields a complex phase factor.

In this work, we introduce the Borromean-Rings (BR)

braiding, namely, the particle-loop-loop braiding generating

the Brunnian links [Fig. 1(b)], in discrete gauge theories with

G=
∏

i ZNi
. Contrary to the particle-loop braiding where the

particle trajectory is linked with the loop, the particle trajec-

tory is not linked to any of the two loops in the BR braiding.

By following a line of geometric arguments, we derive con-

straints [Fig. 2] and quantization condition of the BR braiding

phase if it exists. Then we obtain an explicit formula for the

braiding phase, which is expressed in terms of the Milnor’s
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triple linking number [Eq. (1)]. Also, we construct Topo-

logical Quantum Field Theories (TQFTs) with a BF action

dressed with an AAB topological term (A and B denote some

1-form and 2-form gauge fields respectively) [Eq. (2)] which

support non-trivial BR braiding statistics [Eq. (10)]. The re-

sulting BR braiding phase agrees with the result from geomet-

ric arguments. This work is concluded with several remarks

and future directions.

Preliminaries—As a warm-up, we discuss general aspects

of braiding a particle around loops in Abelian discrete gauge

theories. Here, we are primarily interested in the classes of

closed paths which could lead to non-trivial braiding statistics

[4, 5]. As the particle travels in the complement of loops, the

braiding statistics must be trivial if its closed trajectory can be

adiabatically shrunk to a point. Equivalently, if the trajectory

and the loops are viewed as a link, the braiding statistics is

trivial if the trajectory can be unlinked from the loops. Un-

der the deformation, the trajectory can cross with itself since

the intersection point corresponds to the particle position at

different time instances which can never interact. However,

it cannot cross with any of the loops since the Aharonov-

Bohm effect can contribute to braiding statistics. Besides, the

loops can also undergo adiabatic deformation. Note that while

Aharonov-Bohm interaction is possible among loops, there is

no Aharonov-Bohm self-interaction [37–40]. In other words,

each loop is allowed to cross with itself but not with other

loops. Under such link homotopy, each link component can

cross with itself but not with other link components [19]. Any

particle trajectory that cannot be shrunk to a point under link

homotopy can in principle lead to a non-trivial braiding phase.

In such formulation, each homotopy class of links is as-

signed with a braiding phase that depends only on the under-

lying linking numbers. Hence, while the particle-loop braid-

ing phase is determined by the Hopf linking number L, the

particle-loop-loop braiding phase is governed by the three

mutual Hopf linking numbers and the Milnor’s triple linking

number µ̄ [19]. In this work, we study the particle-loop-loop

braiding statistics which cannot be simply explained by the

Hopf linking numbers. Nevertheless, the higher order link-

ing number µ̄ is an invariant under link homotopy iff all the

three mutual Hopf linking numbers vanish. So when the tra-

jectory and the two loops are mutually unlinked, we expect a

well-defined braiding phase determined by µ̄.

Borromean-Rings Braiding—Here we introduce the BR

braiding in the context of Abelian discrete gauge theories.

Pick any i, j, k ∈ F , the BR braiding is a particle-loop-loop

braiding in which a ZNk
particle ek is carried around mutu-

ally unlinked ZNi
loop mi and ZNj

loop mj such that the

closed path and the two loops form the Borromean-Rings, or

generally the Brunnian link [Fig. 1(b)]. Let Bi,k and Bj,k be

the quantum operators of braiding ek around mi and mj re-

spectively. Given the two loops, any braiding process can be

written as a sequential operation in Bi,k and Bj,k as well as

their inverses, in which mi and mj together with the braid-

ing trajectory γek can be viewed homotopically as a link L.

For the BR braiding, since the braiding trajectory is not linked

=

= = = 0

(a)

(b)

FIG. 2. (Color online) Constraints on the BR braiding phase Θ(L).
(a) Θ(L) changes sign if mi and mj are exchanged. (b) Θ(L) van-

ishes if any two of three components belong to the same gauge group.

with any of the two loops, the sum of exponents is zero for

both Bi,k and Bj,k. For example, the braiding process giv-

ing Borromean-Rings link is written as B−1
j,kB

−1
i,kBj,kBi,k [41].

Since the exponent sum of each of them is zero, if any of the

two constituent braidings Bi,k and Bj,k gives only an Abelian

phase, the BR braiding statistics must be trivial. Hence, non-

trivial BR braiding statistics implies that mi,mj and ek sup-

port non-Abelian braiding statistics, despite the Abelianess of

the gauge group G. We denote the overall BR braiding phase

as Θ(L). Below, we are going to extract several constraints

on the BR braiding phase geometrically.

First of all, since the BR braiding generates the Brunnian

links, the geometric properties of the braiding phase are dic-

tated by the Milnor’s triple linking number µ̄. Let cij,k be

the braiding phase for the simplest BR braiding of particle

ek around mi and mj forming Borromean-Rings with µ̄=1.

Consider carrying the particle ek along its original pathγek by

w times. It generates a Brunnian link L with µ̄ = w. Gen-

erally, any Brunnian link with µ̄ = w can be generated this

way up to link homotopy. Since the BR braiding is oper-

ated repeatedly, the braiding phase accumulates over w times.

Therefore the BR braiding phase should take the linear form

Θ(L)= cij,kµ̄(mi,mj, γek), where the three entries for µ̄ are

respectively the first, second and third component of L. Phys-

ically, cij,k encodes the braiding data while µ̄ gives the geo-

metric properties of the BR braiding process.

Next, we demonstrate the anti-symmetry of the BR braiding

statistics. Consider braiding a particle ek around mi and mj

in a way generating the Borromean-Rings [Fig. 2(a)]. View-

ing the process from the opposite side, the particle ek trav-

els around loops mj and mi with the orientation of the three

components are flipped. Since reversing the orientation of any

component of L causes µ̄ to change its sign, flipping the ori-

entation of the three components gives a minus sign to the

braiding phase. Hence braiding around mi and mj is mi-

nus the braiding around mj and mi, so cji,k =−cij,k. Such

sign change can also be understood as coming from braid-

ing ek around mi and mj but with flipped labels mi and mj

in L, which changes the sign of µ̄. Generally, for arbitrary

Brunnian link L, if the labels mi and mj are interchanged,

Θ(L) → cij,kµ̄(mj ,mi, γek) = −Θ(L). Thus interchanging

the labels of mi and mj flips the sign of Θ(L).
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Next, we show that the BR braiding phase vanishes if any

two objects involved are from the same gauge group. Con-

sider the decomposition B
−1
j,kB

−1
i,kBj,kBi,k = eicij,k for the

BR braiding generating the Borromean-Rings link [Fig. 2(b)].

If i = j, the product of operators reduces to identity and

hence cii,k = 0. If i = k, since Bi,k is guaranteed to give

an Aharonov-Bohm phase 2π
Nk

under the ZNk
gauge group,

the product of operators again reduces to identity and hence

ckj,k = 0. Similarly, we also have cik,k = 0. Consequently,

Θ(L) vanishes if any two of the indices in L are identical. In

other words, non-trivial BR braiding appears only for distinct

indices i, j, k. In particular, non-trivial BR braiding implies

non-Abelian particle-loop braidings Bi,k,Bj,k for distinct fla-

vors, rendering each of them to be gauge non-invariant.

We now derive the quantization rule of the BR braiding

phase. Consider the BR braiding forming the Borromean-

Rings with braiding phase cij,k. Imagine scaling up the phase

by Nk by carrying ek along γek repeatedly for Nk times. The

whole process is equivalent to carrying Nkek once along γek .

Since Nkek is a trivial particle, and braiding is compatible

with fusion, we have Nkcij,k=0 mod 2π. Now imagine scal-

ing up the phase by Ni by winding mi along its locus for Ni

times instead. Again, since Nimi is trivial and braiding is

compatible with fusion, we have Nicij,k = 0 mod 2π. Simi-

larly, Njcij,k=0 mod 2π. Combining all the three conditions,

we have cij,k=
2πkij,k

Nijk
, where kij,k is an integer and Nijk de-

notes the greatest common divisor of Ni, Nj and Nk. Finally,

we get the formula for the BR braiding phase

Θ(L) =
2πkij,k
Nijk

µ̄(mi,mj , γek) , (1)

where all properties of the coefficient cij,k propagate to kij,k .

That is, kji,k = −kij,k and kij,k vanishes if any of the two

indices are the same. Since Θ(L) is defined up to 2π, the

parameter kij,k∈ZNijk
. We conclude one of our main results:

if the BR braiding statistics exists in discrete gauge theories,

the braiding phase must take the form as Eq. (1). Below, we

construct explicitly field-theoretic models which support non-

trivial BR braiding statistics.

TQFTs with AAB Topological Term— It is believed that

low energy physics of long-range entangled phases of mat-

ter is captured by some TQFTs [42]. For example, the topo-

logical features of discrete gauge theories with G =
∏

i ZNi

are known to be described by the BF theories with action

SBF=
´

∑

i
Ni

2πB
idAi, where the 1-form Ai and 2-form Bi

are compact U(1) gauge fields describing the loop and parti-

cle degrees of freedom respectively [43, 44]. TheZNi
fusion

structure of particles and loops is encoded in the cyclic Wilson

integrals of Ai and Bi. Moreover, the Aharonov-Bohm effect

is captured by the effective action SHopf=
∑

i
2π
Ni
IHopf [Σ

i, J i],

where the 3-form J i and 2-form Σi are respectively the parti-

cle and the loop sources describing the braiding process, and

IHopf [Σ
i, J i]=

´

Σid−1J i counts the Hopf linking L(mi, γei).
On top of the BF theories, exotic braiding statistics can be

realized by introducing an extra topological term [22–36, 45–

49]. Below, we introduce the AAB term and show that the

resulting theories support the BR braiding statistics [Eq. (10)].

We begin by exhausting the possible AAB terms for physi-

cal theories. Consider adding anAiAjBk term with some real

coefficientcij,k upon the BF theories [Eq. (2)]. We are going

to show that cij,k here satisfies the same set of constraints as

that in the previous discussion. First, notice that not all pos-

sible terms are independent, more specifically, interchanging

Ai and Aj gives the same term but with a minus sign, hence

cji,k=−cij,k. Second, some choices of indices are improper.

We see i 6= j, otherwiseAiAjBk vanishes. For any flavor i,

since either Ai or Bi is reserved as the Lagrange multiplier

which enforces the ZNi
fusion structure, Ai and Bi of the

same flavor cannot simultaneously appear on top of the BF

theories, so i, j 6=k. In other words, cij,k=0 if any two indices

are the same. So G requires at least three ZNi
group compo-

nents for a legitimate AiAjBk term. Lastly, we show thatcij,k
is quantized due to large gauge invariance. To this end, we

pick some distinct i, j, k ∈F for theAiAjBk term and focus

on the three cyclic group components involved. Consider

S = SBF + SAAB , SAAB =

ˆ

ncij,k

(2π)3
AiAjBk , (2)

where n = NiNjNk. Let a, b = i, j, the action S is invariant

up to a surface term under the gauge transformation

Aa → Aa + dαa , Ba → Ba + dβa + X a ,

Bk → Bk + dβk , Ak → Ak + dαk + X k ,
(3)

where, to compensate the gauge change of the SAAB term, the

Lagrange multipliers Ba and Ak transform with extra twists

X a = −
∑

b

ncab,k

(2π)2Na
(αbBk −Abβk + αbdβk) ,

X k = −
∑

ab

ncab,k

(2π)2Nk
(αaAb + 1

2α
adαb) .

(4)

After integrating out the Lagrange multipliers, the action S

reduces to SAAB, where Aa and Bk are enforced to be closed

with cyclic Wilson integrals
¸

Aa∈ 2π
Na

ZNa
and
¸

Bk∈ 2π
Nk

ZNk

over any closed manifolds. Under large gauge transformation,

the gauge change of the action SAAB consists of terms which

take values in integral multiple ofNicij,k,Njcij,k andNkcij,k
(SM Part 2.1.3 [50]). The large gauge invariance of the result-

ing SAAB term, which implies thatNicij,k,Njcij,k andNkcij,k
vanish mod 2π, leads to the desired coefficient quantization

cij,k=
2πkij,k

Nijk
for integral kij,k .

Next, we discuss the constraints on the braiding. Consider

a generic braiding described by some closed world lines for

particles and closed world sheets for loops. The correspond-

ing conserved particle sourcesJ i, Jj and Jk, and loop sources

Σi,Σj and Σk can be incorporated into S via the source term

Ss = −

ˆ ∑

a

(

JaAa +ΣaBa
)

+ΣkBk + JkAk, (5)

where a= i, j. The sources Σaand Jkare respectively coupled
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to the modified Lagrange multipliers Ba and Ak defined as

Ba = Ba −
∑

b

ncab,k

2(2π)2Na
(Abd−1Bk−d−1Ab Bk) ,

Ak = Ak −
∑

ab

ncab,k

2(2π)2Nk
Aad−1Ab ,

(6)

which transform like ordinary gauge fields.Under gauge trans-

formation, Aa and Bk change by a pure gauge, so JaAa and

ΣkBk must be gauge invariant. However, Ba and Ak change

by a total derivative of non-local terms, which is not strictly

a pure gauge, so ΣaBa and JkAk may not be gauge invariant

for arbitrary braiding. Remarkably,Ss is gauge invariant iff

IHopf [Σ
a, Jk] = 0 , IHopf [Σ

a, Ĵb] = 0 (a 6= b) , (7)

for any Ĵb describing current on the world sheet of mb, for

a, b= i, j (SM Part 2.1.4 [50]). The first constraint means that

the particle-loop braiding of ek and ma alone is not gauge

invariant for a = i, j. The physical meaning of the second

constraint can be understood by considering different choices

of Ĵb. Take Ĵb as the current of any point on mb, it means

that no point on the loop mb can braid around the loop ma for

a 6= b. Take Ĵb as a time slice of the world sheet of mb, which

corresponds to the locus of mb at a fixed time, it means that

there is no linking between the loops ma and mb for a 6= b. In

particular, since crossing between two loops always changes

their linking number, loop crossing of ma and mb is not gauge

invariant for a 6= b. If the loops are static, then the constraints

in Eq. (7) simply mean that the loops mi and mj and the par-

ticle trajectory γek must be mutually unlinked [Fig. 3].

= 0

,                                    ,

FIG. 3. (Color online) Illustration of the braiding constraints in

Eq. (7). If the loops mi and mj are static, then mi, mj and γek
are mutually unlinked circles for gauge invariant braiding process.

Now, we show that these theories support non-trivial BR

braiding statistics. With the source term Ss, the Lagrange mul-

tipliers Ba and Ak enforce that Σa=Na

2π dA
a and Jk=Nk

2π dB
k ,

for a = i, j. Consequently, S+Ss leads to the effective action

Seff =SHopf+SBR , SBR=
2πkij,k
Nijk

IBR[Σ
i,Σj, Jk] . (8)

As in the BF theories,SHopfaccounts for the Aharonov-Bohm

effect for particle-loop braiding within the same flavor. Here,

the AAB term induces an extra effect described bySBRwith

IBR[Σ
i,Σj,Jk] =

´

d−1Σid−1Σjd−1Jk

− 1
2Σ

i(d−1Σjd−2Jk − d−1Jkd−2Σj)

− 1
2Σ

j(d−1Jkd−2Σi − d−1Σid−2Jk)

− 1
2J

k(d−1Σid−2Σj − d−1Σjd−2Σi) . (9)

Analogous to IHopf that counts the Hopf linking L(mi, γei),
the integral IBR also admits a geometric interpretation (SM

Part 2.2 [50]). Consider the gauge invariant particle-loop-loop

braiding, where ek travels around two static loops mi and mj

with mutually unlinked mi,mj and γek . IBR counts the Mil-

nor’s triple linking number µ̄(mi,mj ,γek). Hence,

SBR =
2πkij,k
Nijk

µ̄(mi,mj , γek) . (10)

In other words, the BR braiding process produces a BR braid-

ing phase Θ(L) = SBR. The field-theoretic result here further

justifies the main result (1) obtained independently by geo-

metric arguments. By noting that the braiding phase SBR is

defined mod 2π, we see kij,k ∈ZNijk
can be used to classify

discrete gauge theories with BR braiding statistics.

Conclusions—In this work, we introduced the BR braiding

statistics from both geometric arguments and field-theoretic

approach. Same quantum phenomenon is expected to ap-

pear also in discretized spacetime [51, 52]. The BR braid-

ing statistics reveals exotic phases with non-abelian topolog-

ical order under Abelian gauge group G. Due to the dual-

ity correspondence between topological order and SPT or-

der [9, 22], the proposed BR braiding statistics immediately

implies a new class of SPT order with global symmetry G

(SM Part 3 [50]). In principle, the BR braiding phase can be

observed by interferometry experiments similar to the mea-

surements of Aharonov-Bohm effect, though the experimen-

tal design could be challenging. Nevertheless, it is expected

to show up numerically as Berry phase in lattice Hamiltonian

with higher form gauge symmetry [51, 52]. Lastly, it will be

amusing to study entanglement properties of Eq. (2) [53] and

explore the fermionic analog of BR braiding statistics.
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