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We establish a large deviation principle for the Kardar-Parisi-Zhang (KPZ) equation, providing
precise control over the left tail of the height distribution for narrow wedge initial condition. Our
analysis exploits an exact connection between the KPZ one-point distribution and the Airy point
process – an infinite particle Coulomb-gas which arises at the spectral edge in random matrix
theory. We develop the large deviation principle for the Airy point process and use it to compute, in
a straight-forward and assumption-free manner, the KPZ large deviation rate function in terms of an
electrostatic problem (whose solution we evaluate). This method also applies to the half-space KPZ
equation, showing that its rate function is half of the full-space rate function. In addition to these
long-time estimates, we provide rigorous proof of finite-time tail bounds on the KPZ distribution
which demonstrate a crossover between exponential decay with exponent 3 (in the shallow left tail)
to exponent 5/2 (in the deep left tail). The full-space KPZ rate function agrees with the one
computed in Sasorov et al. [ J. Stat. Mech, 063203 (2017) [40]] via a WKB approximation analysis
of a non-local, non-linear integro-differential equation generalizing Painlevé II which Amir et al.
[Comm. Pure Appl. Math. 64, 466 (2011) [19]] related to the KPZ one-point distribution.

PACS numbers: 05.40.-a, 02.10.Yn, 02.50.-r

Since its birth in 1986, the Kardar–Parisi–Zhang
(KPZ) equation [1] has been applied to describe growth
of interfaces [2], transport in one-dimension (1D) and
Burgers turbulence [3], directed polymers [4], chemical
reaction fronts [5], bacterial growth [6], slow combustion
[7], coffee stains [8], conductance fluctuations in Ander-
son localization [9], polar active fluids [10], Bose Einstein
superfluids [11], quantum entanglement growth [12].

Whereas some stochastic models (e.g. exclusion pro-
cesses [13], random permutations [14], random walks in
random media [15]) are directly related (via mappings
to ‘height functions’) to the universality class for the 1D
KPZ equation; others – namely random matrix theory
(RMT) – rely on hidden connections to KPZ which are
only seen from exact solutions to both KPZ and RMT
models [16]. In this Letter, we describe such a relation-
ship between the KPZ equation and the Airy point pro-
cess – an infinite particle Coulomb-gas [17] which arises
at the spectral edge in random matrix theory – and ex-
ploit variational techniques of electrostatics to precisely
quantify the large fluctuations for the KPZ equation.

The 1D KPZ equation describes the stochastic growth
of an interface of height h(t, x) at x ∈ R and time t > 0

∂th = ∂2xh+ (∂xh)2 + ξ(t, x) , (1)

in convenient units, starting from an initial condition
h(t = 0, x). Here ξ(x, t) is a centered Gaussian white
noise with ξ(t, x)ξ(t′, x′) = 2δ(x − x′)δ(t − t′) and · · ·
denotes expectations w.r.t. this noise. Typically, the
fluctuations of the height field scale, at large time, like
t1/3. Recent progress has yielded exact solutions for the
probability density function (PDF) of the height at a
given space point at arbitrary time when starting from

special initial conditions (e.g. droplet, flat, stationary)
[18–20]. Focusing here and below on the droplet (a.k.a

narrow wedge) initial condition, h(0, x) = − |x|δ − ln(2δ)
for δ � 1, the exact formula for the PDF is expressed in
terms of a Fredholm determinant. Using this, the scaled
and centered height H(t)/t1/3, where H(t) = h(t, 0)+ t

12 ,
was shown to converge in law as t → +∞ to the Tracy-
Widom GUE distribution, which also describes the fluc-
tuations of the largest eigenvalue, λmax, of a large random
matrix from the Gaussian unitary ensemble (GUE).

Despite considerable interest, much less is known
about large deviations and tails of the KPZ field or PDF
P (H, t) = ∂

∂HP(H(t) ≤ H). For general non-equilibrium
systems, large deviation rate functions play a role simi-
lar to the free energy or entropy in equilibrium systems
(see [21] and references therein). Existing large deviation
theories fail to apply in the KPZ growth setting. The
macroscopic fluctuation theory [22] requires local ther-
modynamic equilibrium, not realized here. The weak
noise theory (see, e.g. [23]) applies, but only at very
short times. Understanding the large deviations for the
KPZ equation poses an important conceptual challenge.

Quantitative control over the tails of the KPZ equation
plays an important role in experimental and numerical
works. Precise results can be used e.g. as benchmarks
for broadly applicable numerical Monte-Carlo methods
such as used in [24]. In experimental work (such as re-
viewed in [25]), the tail behavior we are probing corre-
sponds to excess growth. While unlikely at a single point,
if the growing substrate is sufficiently long, disparate re-
gions (spaced as time2/3) will see roughly independent
growth. Hence, by standard extreme-value theory, the
maximal and minimal height of the entire substrate will
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be determined by the one-point tail behaviors. The KPZ
equation also models semiconductor film growth [26]. In
technological applications, the roughness of these films
determines device performance. As many films are grown
independently, large deviations dictate failure rates.

In population growth and mass transport models, the
KPZ tails play contribute to multi-fractal intermittency
[27]. The H/t1/3 � 1 tail is associated with excess mass
growth which comes from locally favorable effects; in con-
trast, the −H/t1/3 � 1 tail is associated with mass die-
out which arises from collective effects of wide-spread un-
favorable growth regions. Due to this collective effect, the
left tail is intrinsically more difficult to analyze at large
time. A similar situation arises in RMT for the tails of
the PDF of λmax: while positive fluctuations arise from
the largest eigenvalue λmax simply detaching from the
bulk of the spectrum, negative ones requires a reorgani-
sation of the entire Wigner semicircle density of eigenval-
ues (the pushed Coulomb-gas) [30]. This analogy leads to
the prediction [31] that for t � 1 and large fluctuations
|H| ∼ t the right tail (H � 0) scales as − lnP (H, t) ∼ t
while the left tail (H � 0) scales as − lnP (H, t) ∼ t2.

For short times t� 1 the left tail of the PDF (H � 0)
behaves as P (H, t) ∼ exp(− 4

15π |H|
5/2/t1/2), as was

shown analytically (via weak noise theory and exact so-
lutions) [32, 33] and numerically [24] (see also [23, 34, 35]
for other initial conditions). Extracting this tail in the
intermediate or large time limit is much harder. For
t� 1, in the typical scaling region H ∼ t1/3, the left tail
should behave like the Tracy-Widom GUE distribution,
i.e. P (H, t) ∼H→−∞ exp(− 1

12 |H|
3/t). Until recently,

nothing was known about how far this cubic exponent
persists into the very far left tail region |H| ∼ tα with
α > 1/3, or whether it holds for intermediate times.

Given the similarities between the KPZ and RMT
problems, it is natural to try to attack these tail questions
using methods inspired by RMT. The left tail behav-
ior for λmax can be accessed by either (i) the Coulomb-
gas and associated electrostatic variational problem for
the GUE spectrum [29, 30] (see also [36] for other large
deviation applications of the Coulomb gas) or (ii) the
relationship between gap probabilities and certain clas-
sical integrable systems [37] (which, in N → ∞ edge
limit, relate to the Painlevé II equation [38]). [19] intro-
duced a non-local, non-linear integro-differential equa-
tion which generalizes Painlevé II by including a “Fermi-
factor”, and showed that its solution relates to the
KPZ PDF. Studying this generalized equation via stan-
dard ‘integrable-integral operator’ methods [39] involves
infinite-dimensional Riemann-Hilbert problem steepest
descent analysis which is beyond current techniques. Em-
ploying a certain approximation ansatz, [31] attempted to
analyze this equation. While they successfully predicted
the scaling form for the large deviation tail P (H, t) ∼
exp(−t2Φ−(H/t)) for −H ∼ t � 1, the approximations
were too reductive and [31] predicted Φ−(z) = 1

12 |z|
3

which turns out only to hold true for z near 0. Ref. [40]
revisited this analysis and employed a WKB approxima-
tion along with a ‘self-consistency’ ansatz for the form
of the solution to a Schrödinger equation in which the
potential depends upon the solution. Given these as-
sumptions, [40] extracted a formula

Φ−(z) =
4

15π6
(1− π2z)5/2− 4

15π6
+

2

3π4
z− 1

2π2
z2 (2)

which predicts a crossover between Φ−(z) 'z→−∞
4

15π |z|
5/2 and 'z→−0 1

12 |z|
3. This, taken with the short-

time estimates, suggests that the |H|5/2 tail remains valid
at all times (see also [24] and [23, 32, 34]) and that there
is a crossover between the 1

12 |H|
3/t and 4

15π |H|
5/2/t1/2

tail when |H| ≈ t (once t� 1).

The purpose of this Letter is to demonstrate how the
Coulomb-gas can be utilized in a straight-forward and
assumption-free manner to (i) establish, using the large
deviations for the Airy point process, an electrostatic
variational formula for Φ−(z) whose solution (which we
derive) agrees with (2), and (ii) demonstrate the first pre-
cise tail bounds (13) which are valid for all intermediate
and long times and which capture the crossover between
the 1

12 |H|
3/t tail for |H| � t and the 4

15π |H|
5/2/t1/2

tail for |H| � t. Our work provides a description of
the intermediate and late time left large deviations for
the KPZ equation where the connection to RMT and
the role of the collective effects is explicit: each fixed
value of z = H/t corresponds to an optimal eigenvalue
density (see Fig. 1). Finally, we extend our study to
the half-line KPZ equation in the critical case, which
relates to the Gaussian orthogonal ensemble (GOE),
leading (via our RMT approach) to the rate function

Φhalf-space
− (z) = 1

2Φfull-space
− (z).

Our starting point is a remarkable identity [41, 42],
obtained from the exact solution of the droplet initial
condition [18, 19] which directly connects KPZ and RMT
(as well as fermions in an harmonic well at temperature

of order t−1/3 [43]): for ϕt,s(a) = log(1 + et
1
3 (a+s))

exp(−eH(t)+st1/3) = EAiry

[
exp

(
−
∞∑
i=1

ϕt,s(ai)
)]
. (3)

The l.h.s is an expectation over the KPZ white noise giv-
ing access to P (H, t) while the r.h.s is the expectation of
a “Fermi factor” over the Airy point process (Airy PP)
generating the set {ai} ∈ R. The Airy PP describes
the largest few eigenvalues of a large GUE matrix. It
is a ‘determinantal’ measure on infinite point configura-
tions a = (a1 > a2 > · · · ) on R which means that for all
k ≥ 1, the k-th correlation function ρk(x1, . . . , xk) (which
equals the probability density for the event that

{
xi ∈

a, for all 1 ≤ i ≤ k
}

) takes the form ρk(x1, . . . , xk) =

det
(
K(xi, xj)

)
1≤i,j≤k for some fixed ‘correlation ker-

nel’ K : R2 → C. The Airy PP correlation kernel is
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KAi(x, y) =
∫∞
0

Ai(x + r)Ai(y + r)dr. In particular
the mean density is ρ(a) = ρ1(a) = KAi(a, a) 'a→−∞
π−1

√
|a|. This agrees with the square-root behavior of

the Wigner semi-circle at the edge. Remarkably, the
|H|5/2 tail emerges quite simply from this

√
|a| density

as we show from the first term in the cumulant expan-
sion of the r.h.s. of (3), see (6). After observing this,
we describe the Airy PP large deviation principle (LDP)
derived via Coulomb-gas, and use it to compute the full
crossover rate function Φ−(z). Finally, we provide the
bounds (13) which describes intermediate time behavior
of the tail.

Cumulant expansion. As st
1
3 → ∞ the l.h.s. of (3)

approaches P(H(t) ≤ −st 1
3 ) = P(H(t) ≤ zt) with z =

−st−2/3. The r.h.s. of (3) is evaluated via cumulants as

log
(
r.h.s.(3)

)
=

∞∑
n=1

κn
n!

(4)

where κn is the n-th cumulant of the Airy PP whose
general form is known [44], e.g. for n = 1, 2

κ1 = −Tr(ϕt,sKAi) = −
∫ +∞

−∞
daϕt,s(a)ρ(a). (5)

and κ2 = Tr(ϕ2
t,sKAi) − Tr(ϕt,sKAiϕt,sKAi), where

(ψK)(x, y) = ψ(x)K(x, y), TrK =
∫
R daK(a, a). In the

limit z → −∞, it is sufficient to keep only the first cu-
mulant (the n = 1 term) in (4), which, using the above
asymptotics ρ(a) 'a→−∞ π−1

√
|a|, is estimated as (we

use the notation (·)+ = max(·, 0) below)

κ1 ' −t1/3
∫ +∞

−∞
da(a+ s)+ρ(a)

' −t1/3 4

15π
s5/2 = −t2 4

15π
|z|5/2. (6)

This simple argument gives the leading behavior as z →
−∞ of the left large deviation rate function, Φ−(z) '
4

15π |z|
5/2, hence the desired |H|5/2 tail. Explicit calcula-

tion (see [45]) of the next higher cumulants

κ2 ' t2/3
s2

π2
= t2

z2

π2
, κ3 ' −t

4|s|3/2

π3
= −t2 4|z|3/2

π3
(7)

shows their subdominance both (i) for−z � 1 with t� 1
and z = H/t fixed and (ii) t fixed and large s = −H/t1/3
and reproduces the large |z| expansion of (2).

Coulomb-gas and large deviation rate function.
Using (3), Φ−(z) can be computed as (write E for EAiry)

Φ−(z) = lim
t→∞

1

t2
logE

[
exp

(
−
∞∑
i=1

ϕt,−zt2/3(ai)
)]
.

For large t, we have ϕt,−zt2/3(t2/3a) ≈ t(a − z)+. Let
µt(a)da = t−1

∑
i≥1 δ−t−2/3ai(a)da denote the scaled,

space-reversed Airy PP empirical measure. Then we have

Φ−(z) = lim
t→∞

1

t2
logE

[
exp

(
− t2

∫
R

daµt(a)(−z − a)+

)]
.

(8)

Like the GUE, the Airy PP should enjoy an LDP so that
for a suitable class of functions µ, P(µt ≈ µ) ≈ exp

(
−

t2IAiry(µ)
)
. To our knowledge, this rate function is not in

the literature, and we describe it below and in [28]. Given
this, the r.h.s. of (8) can be evaluated via a variational
problem, Φ−(z) = minµ Σ(µ), with cost function

Σ(µ) =

∫
R

daµ(a)(−z − a)+ + IAiry(µ). (9)

To derive the LDP for the Airy PP we will appeal
to the fact that the Airy PP arises as an edge limit of
the GUE. The GUE spectrum is a 1D Coulomb-gas with
logarithmic interaction which immediately leads to an
electrostatic variational formulation for the GUE LDP
[17, 29] (with the Wigner semi-circle representing the
minimizer of this electrostatic energy). Our approach is
to rewrite the GUE LDP in such a manner that it admits
an edge scaling limit to yield the Airy PP LDP.

Recall from [29] that the empirical measure

ΛN (λ)dλ = 1
N

∑N
i=1 δλi(λ)dλ associated to the eigen-

values {λ1, . . . ,λN} of the GUE (normalized to have
typical support [−2, 2] – see [28] for a precise definition)
enjoys an LDP so that, for a generic density Λ with unit
mass, P(ΛN ≈ Λ) ≈ exp

(
−N2I2(Λ)

)
. The rate function

Iβ(Λ) is the difference of the electrostatic energy of a
Coulomb-gas of charge β (with β = 2 for GUE, and β = 1
for GOE) with density Λ, as compared to that of the
Wigner semi-circle density Λsc(λ) = 1

2π

√
4− λ21{|λ|<2}.

Iβ can be rewritten (see [28] for details) as

Iβ(Λ) =
β

2
J(Λ) +

β

2

∫
R

dλV (λ)Λ(λ), (10)

with a Coulomb interaction term J(Λ) = −
∫
R2 log |λ1 −

λ2|
∏2
i=1 dλi(Λ(λi) − Λsc(λi)) (note that Λ − Λsc is a

signed density with integral over R equal to 0) and

potential term V (λ) =
∫ |λ|
0

dλ′ ((λ′
2 − 4)+)1/2. The

(space-reversed) Airy PP arises as a scaling limit of the
GUE spectrum near its lower edge λ = −2. To de-
duce the Airy PP LDP from that of the GUE, we in-
troduce the scaling λ = −2 + t2/3N−2/3a. As N → ∞,
NdλΛN (λ) ' tdaµt(a), which when inserted into (10)
gives N2Iβ(Λ) ' t2IAiry(µ), with

IAiry(µ) = JAiry(µ) + U(µ).

Here JAiry(µ)=−
∫

log |a1−a2|
∏2
i=1dai(µ(ai)−µAiry(ai))

is defined for densities µ satisfying mass-conservation∫
da (µ(a)−µAiry(a)) = 0, where µAiry(a) = 1

π

√
a1{a>0},

and U(µ) = 4
3

∫ 0

−∞ da |a| 32µ(a).
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Instead of searching directly for the minimum of Σ
in (9), we first consider a simpler cost function

ΣJ(µ) =

∫
R

da (−z − a)+µ(a) + JAiry(µ)

that drops the term U(µ). The minimizer µ∗ of ΣJ is the
unique measure (see [28] for details) such that

(−z − a)+ − 2

∫
R

da′ log |a− a′|(µ∗(a′)− µAiry(a′)) ≥ c

(11)

for some constant c with strict equality on the support
of µ∗. Differentiating the l.h.s. of (11) in a yields

−1{a<−z} − 2

∫
R

da′
µ∗(a

′)− µAiry(a′)

a− a′
. (12)

Consider a generic interval [u,∞) and let

µ∗,u(a) =
( 1

π

√
a− u+

1

2π2
log
∣∣∣√a− u+

√
v√

a− u−
√
v

∣∣∣
+

1

π

(u
2
−
√
v

π

) 1√
a− u

)
1{a>u},

where v = −z−u. Ref. [28] verifies that substituting this
density µ∗,u(a) for µ∗(a) implies that (12)= 0 on [u,∞).
Furthermore, [28] shows that u = u0 = 2

π2 (
√

1− π2z−1)
is the unique choice of u for which for which one also
has (12)≥ 0 on (−∞, u0) and = 0 on [u0,∞). This
means that µ∗(a) = µ∗,u0(a) satisfies (11) and hence is
the unique minimizer of ΣJ . Evaluating yields (see Fig 1)

µ∗(a) =
( 1

π

√
a− u0 +

1

2π2
log
∣∣∣√a− u0 + π

2u0√
a− u0 − π

2u0

∣∣∣)1{a>u0}.

The associated minimum of ΣJ is

min
µ

ΣJ(µ) =
4

15π6
(1− π2z)

5
2 − 4

15π6
+

2

3π4
z − 1

2π2
z2,

which coincides precisely with Φ−(z) in (2).
Returning to Σ from (9), we note that U(µ) ≥ 0 implies

(min Σ) ≥ (min ΣJ). Since µ∗(a) vanishes for a < 0
(since u0 > 0), we have U(µ∗) = 0 and hence Σ(µ∗) =
ΣJ(µ). Thus, the minimizer and minimum for ΣJ in
fact also applies to Σ. Since Φ−(z) = minµ Σ(µ), this
confirms the formula in (2) and the calculation of [40].
Tail bounds for intermediate times. While the KPZ
LDP holds for t → ∞, the crossover behavior between
exponents 3 and 5/2 remains valid at all intermediate
times. Precisely: For any ε, δ ∈]0, 13 [ and t0 > 0 then
there exists constants S = S(ε, δ, t0), K1 = K1(ε, δ, t0) >
0 and K2 = K2(t0) > 0 such that for all s ≥ S and t ≥ t0,

P(H≤−st 1
3 )≤e−

4(1−ε)
15π t

1
3 s

5
2 + e−K1s

3−δ−εt
1
3 s + e−

1−ε
12 s3

P(H≤−st 1
3 )≥ e−

4(1+ε)
15π t

1
3 s5/2 + e−K2s

3

(13)
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* (a)
Airy(a)

FIG. 1. Optimal density µ∗(a) at z = −1 compared to
µAiry(a). The density µ∗ has a log singularity at a = −z (c.f.
[46] for another Coulomb gas problem with similar behavior).

For t2/3 � s � 1, the second and third terms in the
first line of (13) dwarf the first term and represent cu-
bic decay (in the exponential) in s. In particular, as t
gets large, only the third term survives and we recover
(up to an ε correction) the predicted 1

12s
3 decay. On

the other hand, for s� t2/3 the first term in the second
line of (13) dwarfs the others and recovers the predicted
4

15π s
5/2 decay for all t. The second line of (13) con-

tains corresponding lower bounds – though notice that
for t large and t2/3 � s� 1, our bounds do not recover
the 1

12 constant for the lower bound on the cubic decay.
This result recovers the large and small z behavior of the
t → ∞ rate function Φ−(z). Prior to (13), the only fi-
nite time bounds were in [47] which provided a Gaussian
upper-bound on the decay (hence, the wrong exponent).
Moreover, those bounds are not adapted to large t center
and scaling—becoming ineffective as t grows.

Eqs. (13) follow from two considerations. The typi-
cal locations of the ai are governed by ρ(a). Plugging
these typical values into (3) yields the 5/2 exponential
term. However, the ai are random and may deviate from
their typical locations. For instance a1 ≤ −s with prob-
ability ≈ exp(− 1

12s
3). Such deviations lead to the cubic

exponential terms. In order to provide matching upper
and lower tail bounds, we precisely control the LDP for
the counting function of the Airy PP in large intervals.
This can be done via asymptotics of the Ablowitz-Segur
solution to Painlevé II [48, 49] which relates to the ex-
ponential moment generating function for this counting
process, as well as by using of the relation of the AAP
to the stochastic Airy operator [50]. The main ideas and
steps of this derivation are provided in [28] (and further
technical details and complete rigorous proofs are in [51]).

Extensions and Summary. The approach developed
in this Letter is applicable to certain variants of the KPZ
equation which enjoy identities similar to (3) – namely
half-space KPZ [52], the stochastic six vertex model and
ASEP [42, 53]. Briefly we consider the half-space KPZ
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equation, i.e. (1) restricted to x ∈ R+, with Neumann
b.c. ∂xh(t, x)|x=0 = A, for the value A = −1/2 corre-
sponding to the so-called critical case. In that case and
for droplet initial condition [52] proved that

exp(−1

4
eH(t)+st1/3) = EGOE

[+∞∏
i=1

1√
1 + et1/3(ai+s)

]
where the r.h.s. expectation is over the β = 1 version of
the Airy PP (which describes the top few eigenvalues at
the spectral edge for the GOE instead of GUE – see also
[28]). Employing the Airy PP Coulomb-gas approach
from this Letter, we find that due to the square-root in
the r.h.s. above (which introduces a factor of 1/2 in
exponential form), and the value of β = 1 (instead of

β = 2), the half-space KPZ rate function Φhalf-space
− (z) =

1
2Φ−(z) where Φ−(z) is the full-space function in (2).

In conclusion, by relating the distribution of the height
for the KPZ equation to an expectation over the Airy
point process, we are able to employ the Coulomb-gas
formalism and associated electrostatic problem large de-
viation principle (first for the GUE and, through a limit
transition which we present, for the Airy point process)
to identify the KPZ rate function. Solving the variational
problem produces the formula in (2). This argument
brings the role of random matrix theory in the study
of KPZ to the forefront and provides a straight-forward
and assumption-free derivation of the KPZ rate function.
Additionally, a similar approach should be applicable to
other exactly solvable KPZ class models such as ASEP
or the stochastic six vertex model which connect to dis-
crete Coulomb-gases. This approach also permits us to
derive results valid for all intermediate times and opens
the way to systematically calculate higher order correc-
tions between the long time and finite time PDF, as is
useful in experiments and numerics.
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