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Abstract

While nearly all theoretical and computational studies of entangled polymer melts have focused

on uniform samples, polymer synthesis routes always result in some dispersity, albeit narrow, of

distribution of molecular weights (-DM = Mw/Mn ∼ 1.02-1.04). Here the effects of dispersity on

chain mobility are studied for entangled, disperse melts using a coarse-grained model for polyethy-

lene. Polymer melts with chain lengths set to follow a Schulz-Zimm distribution for the same

average Mw = 36 kg/mol with -DM = 1.0 to 1.16, were studied for times of 600 − 800 µs using

molecular dynamics simulations. This time frame is longer than the time required to reach the

diffusive regime. We find that dispersity in this range does not affect the entanglement time or

tube diameter. However, while there is negligible difference in the average mobility of chains for

the uniform distribution -DM = 1.0 and -DM = 1.02, the shortest chains move significantly faster

than the longest ones offering a constraint release pathway for the melts for larger -D.
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The dynamics of macromolecules drive the unique viscoelastic properties that underline

their strength and flexibility. Polymer chains consist of a large number of atoms that often

exceeds 106, constituting entropic objects whose properties scale with their molecular weight.

Variations in molecular weights, or the dispersity, have an immense effect on their phase

behavior and dynamics and consequently affect numerous technologies, particularly those

that incorporate entangled polymers with controlled elasticity.

The variability in molecular weights stems from inherent polymerization synthesis routes

that yield dispersity in polymer chain length. This dispersity is a result of the statistical

process that determines the polymerization path which is manifested in the differences of the

number average molecular weight Mn and the weight average molecular weight Mw [1]. The

degree of dispersity -DM is defined as the ratio of Mw/Mn [2]. Among the lowest dispersity

polymers are those made by anionic and atom-transfer radical polymerization [3, 4], which

exhibit relatively narrow distributions -DM ∼ 1.02− 1.04. The dispersity of these polymers

is well captured by the Schulz-Zimm distribution [1, 5, 6]. Seemingly a small number,

this variability in chain lengths reflects a wide distribution of molecular weights where the

ratio of the shortest to the longest chain length for the Schulz-Zimm distribution is three

even for -DM = 1.02. This corresponds to a difference in relaxation times of 27 assuming

a standard reptation exponent of 3.0, larger if one uses the experimentally observed value

of 3.4. The effect of systematically varying -DM on the dynamics of entangled melts is not

easily accessible experimentally and remains an open question theoretically notwithstanding

immense effort [7–18]. Most of these studies has focused on blending mixtures of two chain

lengths. Here with the power of new computational tools, we address the effects of narrow

distributions of Mw within the framework anionic and atom-transfer radical polymerization

on chain mobility in entangled melts. This fundamental aspect of polymer physics has

not been thoroughly explored, and the understanding of the constraint release pathways in

which dispersity affects polymer response remains an open question. Consistent with earlier

dynamic theories and simulations [1, 18, 19], our molecular dynamics (MD) simulations show

that the presence of highly mobile short chains leads to constraint release for longer chains.

The significance of polymeric mechanical response has resulted in thorough efforts to

resolve the effects of the dispersity of molecular weights on the flow of entangled melts. The

flow characteristics are often captured in terms of the dependence of the viscosity on shear

rate and linear viscoelastic response which are sensitive to chain dispersity. The effects
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become particularity significant for high molecular weights [20, 21]. Dispersed melts have

been treated theoretically by extending models of melts with uniform chain length [1, 22].

These models focused on linear viscoelasticity of entangled polymer melts [8–15, 17].

These theories clearly demonstrate that the dynamics of linear chains in dispersed poly-

meric melts cannot be described by the classical reptation theory. Only models which

explicitly consider the effects of the disperse surroundings of a chain through tube renewal

can describe the dispersity effects on observed rheological response. While essentially all

previous theoretical work on dispersed polymer melts have focused on linear viscoelastic

response, few have discussed the effect of polymer dispersity on chain mobility that un-

derlines the viscoelastic response [11]. Molecular dynamic simulations allow us to study

dispersed entangled polymer melts, bridging the gap between average behavior captured by

viscoelastic theories and chain mobility.

Numerical simulations are optimally positioned to study chain mobility in disperse melts.

Previous numerical studies of disperse polymers melts have largely focused on binary blends

[23–29]. However, due to computational limitations, only the longer of the two chain lengths

was well above the entanglement molecular weight Me. There have been few studies of

polymer melts with a distribution of chains lengths, though mostly for short, unentangled

polymers [19, 23, 30–37]. Rorrer et al. [19, 34–36] mapped a distribution of chain lengths

on a small number of chain lengths and showed that for the same weight-averaged molecular

weight, increasing the dispersity in chain lengths gives a lower Rouse time and introduces a

broadening of the transition to reptation of the chains. Li et al. [37] have shown that even

very large dispersity has little effect on the polymer glass transition.

With the significance of understanding the dispersity of polymers on chain mobility in

entangles melts, this study has used polyethylene (PE), a well-studied macromolecule, as a

model system. Computationally, coarse-grained (CG) models with 3-48 methylene groups

per CG pseudo-atom [38–44] have been developed, providing an essential tool to probe a

sufficiently large melt that will allow the distinction of dispersity effects. Using a CG model

for PE with four methylene groups per CG bead [43–45], we examine chain mobility of

disperse entangled polymer melts with dispersity -DM in the range of the best synthetic

routes and compare the results to a uniform polymer melt. This CG model was chosen since

for more than 5 methylene groups per CG bead, one has to include extra beads or other

constraints to avoid chains cutting through each other [38, 39, 43, 44]. The CG PE model
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used here has previously derived from fully atomistic simulations [43, 44]. The nonbonded

and bonded potentials were determined using an iterative Boltzmann inversion method.

Additional details of the methodology can be found in Salerno et al. [43, 44]. Melts with an

average molecular weight Mw ∼ 36 kg/mol (∼ 640 CG beads) for dispersity -DM=1.0, 1.02,

1.04, 1.08, and 1.16 were studied. Using this CG models, we could reach times of order 800

µs. In comparison with earlier simulations of broader dispersity, we focus exclusively on low

dispersity to understand its effects on chain mobility.
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FIG. 1. Distribution P (M) versus molecular weight M for -DM=1.04 (red) for 2000 chains and

1.16 (blue) for 4000 chains compared to the analytic Schulz-Zimm formula (eq. 1).

To model narrow molecular weight distributions in polymer melts synthesized by anionic

and atom-transfer radical polymerization, the chain lengths were chosen to follow a Schulz-

Zimm distribution [1, 5, 6],

P (M) =
zz+1

Γ(z + 1)

M z−1

M z
n

exp

(
−zM
Mn

)
(1)
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TABLE I. Dispersity -DM , number of chains Nc, number of CG beads Nt, average molecular weight

Mw, number average molecular weight Mn, calculated -Dc
m = Mw/Mn, the length of the run Tr

(scaled time), number averaged diffusion constant D, and weight averaged diffusion constant D̄.

-DM Nc Nt Mw [kg/mol] Mn [kg/mol] -Dc
m Tr [µs] D x 1013 [m2/s] D̄ x 1013 [m2/s]

1.0 800 512000 35.8 35.8 1.0 790 1.15 1.15

1.02 2000 1251799 35.8 35.2 1.019 830 1.16 1.22

1.04 2000 1237358 35.6 34.4 1.036 800 1.23 1.29

1.08 2000 1176236 35.8 32.9 1.087 680 1.39 1.53

1.16 4000 2203172 36.0 30.8 1.169 600 1.77 2.04

where -DM = Mw/Mn = (z + 1)/z [6]. This distribution captures well the experimental

observed molecular weight dispersity as resolved by chromatography [1]. All systems had

the same weight-average molecular weight Mw = 35.8 ± 0.2 kg/mol. Experimentally the

entanglement molecular weight Me ∼ 1.1-1.2 kg/mol [46, 47] or about 20 CG beads for PE.

Here we use Nc = 2000 chains for 1.02 ≤ -DM ≤ 1.08 and 4000 chains for -DM = 1.16 to

represent the Schulz-Zimm distribution, as shown in Figure 1. For -DM = 1.0, Nc = 800. For

the largest dispersity -DM = 1.16, the shortest chain (M/Me ∼ 10) is well entangled. Within

these distributions, there are 398, 524, 671, and 940 unique chain lengths for -DM= 1.02,

1.04, 1.08, and 1.16 respectively. Details of the systems studied here are listed in Table 1.

The simulations were performed using the Large Atomic Molecular Massive Parallel Sim-

ulator (LAMMPS) molecular dynamics code [48]. The melts were constructed following the

procedure outlined in Auhl et al. [49] with periodic boundary conditions in all three direc-

tions. The simulation was performed at constant volume with the velocity-Verlet integrator

and a Langevin thermostat with a damping constant of 100 ps to maintain the temperature

at 500 K and a time step of 20 fs. Coarse graining reduces the number of degrees of free-

dom in a system, creating a smoother free-energy landscape compared with fully atomistic

simulations. This results in faster dynamics for the CG polymer chain than for the fully

atomistic model [50–53]. For the model used here with 4 methylene groups/CG bead, the

dynamic scaling factor α = 6.2 [43–45] at 500 K and at an experimentally relevant density,

ρ = 0.76g/cm3[54]. For all the results presented here, time is scaled by α, and all five

systems were run for 5.0-6.6× 109 time steps. These run times are equivalent to 600-800 µs
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and are listed in Table 1 for each system.

FIG. 2. Mean squared displacement of the center of mass g3(t) (open) and center four CG beads

g1(t) (solid) for (a) 4 values of the molar mass dispersity (-DM ) and (b) for -DM=1.04, number

averaged over all chains (green triangles), the shortest 5% of the chains (blue squares) and longest

5% of the chains (red circles)

The mean-squared displacements (MSD) of the center of mass (cm) g3(t) = 〈(rcm(t) −

rcm(0))2〉 and the center four CG beads of the chain g1(t) = 〈(ri(t) − ri(0))2〉 are shown in

Figure 2a for four values of -DM . The data shown in Figure 2a are averaged over all chains

in the system. The two quantities allow the distinction of local motions at short times and

macroscopic motion at long times. For long times, the average chain mobility increases and

the terminal time τd, when the MSDs become diffusive, decreases as -DM increases from 1.0

to 1.16. As seen from the results for the weight averaged diffusion constant D = g3(t)/6t

for t > τd listed in Table 1, D increases by 50% over the range of -DM studied. Results for a

uniform melt (-DM = 1.0) and the lowest dispersity -DM = 1.02 are nearly indistinguishable.
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As seen from g1(t), the motion of the inner monomers at early times does not depend on

-DM , as all the chains, even for -DM = 1.16, are much longer than the entanglement length.

From g1(t), we find that the crossover from the early Rouse relaxation t1/2 regime to the t1/4

reptation regime at which topological constraints set in, is at t∗e ∼ 14 ns. Assuming that

the distribution of segment displacement along the tube is Gaussian on the scale of the tube

diameter dT [55], one can determine the entanglement time τe from t∗e = π
9
τe. This gives

τe ∼ 40 ns. The MSD of the center monomers at the crossover [55] g∗1e = 2
3π
d2T gives a tube

diameter dT ∼ 4.8 nm. Fits to the tube model of the dynamic structure function S(q, t)

from neutron spin-echo experiments by Richter et al. [56] and Schleger et al. [57] for PE of

the same Mw at 509 K give τe ∼ 5 ns and dT ∼ 4.35 nm.

The effect of the dispersity is captured through measurements of the mobility of the

shortest and longest chains in each melt. Figure 2b presents results for the MSD of the

shortest and longest 5% of the chains compared to the average MSD for all chains for

-DM = 1.04. While there is little difference in the motion of the center beads of the chain

at early times, at later times the mobility of the beads for the shortest 5% of the chains

deviate more from the mean than do the longest 5% of the chains. For -DM = 1.04, for

the shortest 5% of the chains Mw = 22.0 kg/mol while Mw = 50.3 kg/mol for the longest

5%, compared to the number average molecular weight of the system Mw = 35.6 kg/mol.

The diffusion constants directly extracted from the simulations are presented in Figure 3,

averaged over all chains D, the shortest 5% DS and longest 5% DL. These results show that

the shorter chains move significantly faster than the average and as the dispersity increases,

DS deviates considerably more from D than does DL. For comparison, for -DM = 1.04,

D(22.0) = 3.4 x 10−13 m2/s for a uniform melt of chains with Mw = 22.0 kg/mol is 6%

larger than DS = 3.2 x 10−13 m2/s, whereas D(50.3) = 5.5 x 10−14 m2/s for a uniform melt

of chains with 50.3 kg/mol is 13% smaller than DL = 6.3 x 10−14 m2/s. These results for

D(M) are obtained from simulations for uniform systems presented in the inset of Figure

3 [58]. The ratio of D for a uniform melt of the same Mw as the shortest chains and DS

increases as -D increases whereas the ratio between D for a uniform melt of long chains and

DL does not. For -DM = 1.16, D(11.0)/Ds = 1.2, while D(62.8)/DL = 0.9, where Mw = 11.0

kg/mol is molecular weight of the shortest 5% of the chains and Mw = 62.8 kg/mol is the

molecular weight for the longest 5% of the chains for -DM = 1.16. We also measured the

static structure factor S(q) for the entire melt and for the shortest and longest 5% of the
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FIG. 3. Diffusion constant D as a function of -DM . Weight average D averaged over all the chains

(black squares), the shortest 5% of the chains DS(blue triangles), and the longest 5% of the chains

DL (green circles). Blue and green lines are guides to the eye. Error bars are size of symbols. Also

shown is D̄ calculated from the diffusion constant for uniform melts from eq. 2 (black line). Inset

shows the diffusion constant D(M) for uniform melts of molecular weight M and the power law fit

for large M given in the text.

chains. These measurements show no evidence of phase separation of the chains for all -D

studied. The divergence of the motion of the shortest and longest chains suggest that the

short chain enable a constraint release mechanism for the dynamics [1, 22], which is the

disentanglement of a chain due to other polymers reptating away.

The diffusion constant of the disperse melts is estimated from the diffusion constant

D(M) of uniform melts by incorporating the distribution P (M) of the chains using
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D̄ =

∫
D(M)P (M)MdM∫

P (M)MdM
(2)

From a series of simulations of uniform polymer melts for 1.6 kg/mol ≤M ≤ 35.8 kg/mol,

shown in inset of Figure 3, we find that for large M , D(M) is well described by a power

law D(M) = D1(M/M1)
−2.18, where D1 = 2.81 x 10−10 m2/s and M1 = 1 kg/mol [58]. The

decay of D(M) with a power law exponent greater than 2 for large M is consistent with

experimental results [59]. Using this power law for D(M) and the Schulz-Zimm distribution

(eq. 1) for P (M), we estimate D̄ using eq. 2. As seen from the inset in Figure 3 and Table

1, D̄ > D for all -DM . For small M , D̄ gives a very good estimate of the measured diffusion

constant D as the center of the distribution P (M) dominates. However as M increases, the

two begin to diverge as the local environment that a chain in uniform melt begins to deviate

from that in the dispersed melt.

This study probed directly the mobility of dispersed entangled polymer melts with dis-

tribution as narrow as experimentally attainable for long entangled polymers. Overall the

average mobility of the chains increases as the dispersity increases. We observe that though

the average mobility is hardly affected within this dispersity range, the mobility of the short-

est and longest chains deviates considerably from the average. The increase diffusion of the

shorter chains results in constraint release for the longer chains, leading to faster motion

of the longer chains in the dispersed melt than in a uniform melt. This large variation in

mobility of chains within entangled melts offers a means to tune the viscoelasticity of these

melts by manipulating chain mobility through dispersity. One would expect that the fre-

quency dependence rheological response of the viscosity will be strongly affected by the fact

that the shortest and longest changes move at significantly faster and slower rates compare

with a uniform system. Studies of this effect are currently on the way.
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