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Recent experiments in iron pnictide superconductors reveal that, as the putative magnetic quan-
tum critical point is approached, different types of magnetic order coexist over a narrow region
of the phase diagram. Although these magnetic configurations share the same wave-vectors, they
break distinct symmetries of the lattice. Importantly, the highest superconducting transition tem-
perature takes place close to this proliferation of near-degenerate magnetic states. In this paper,
we employ a renormalization group calculation to show that such a behavior naturally arises due
to the effects of spin-orbit coupling on the quantum magnetic fluctuations. Formally, the enhanced
magnetic degeneracy near the quantum critical point is manifested as a stable Gaussian fixed point
with a large basin of attraction. Implications of our findings to the superconductivity of the iron
pnictides are also discussed.

Introduction.– Magnetism in the iron pnictide super-
conductors remains an intensely studied subject, not
least due to its impact on unconventional supercon-
ductivity [1–3], but also as a playground for exploring
unusual types of magnetic orders [4–6]. While early
experiments reported the prevalence of a stripe spin-
density wave (SSDW) in the phase diagrams of these
systems [7, 8], a series of recent experiments in sev-
eral different compounds found a richer behavior [9–24].
As optimal doping is approached, the SSDW transition
temperature is suppressed to zero, signaling a putative
magnetic quantum critical point (QCP). In this region,
other types of magnetic orders proliferate. Although
these are characterized by the same wave-vectors as the
SSDW phase, Q1,2 = (π, 0), (0, π), they do not break
the tetragonal symmetry of the lattice – hence being
dubbed C4 magnetic phases [12]. The proximity of the
superconducting dome to this peculiar regime of inter-
twined magnetic phases with comparable transition tem-
peratures raises important questions about the interplay
between magnetism, quantum fluctuations, and super-
conductivity. Phenomenologically, these C4 phases can
be understood as double-Q configurations correspond-
ing to a collinear or coplanar equal-weight superposition
of (π, 0) and (0, π) orders – in contrast to the single-Q
SSDW phase, which breaks tetragonal symmetry and is
thus called the C2 phase [6].

Several microscopic mechanisms have been proposed to
explain their origin [4, 5, 25–35]. However, they generally
suffer from two drawbacks. (i) The determination of the
ground state follows from a mean-field analysis, which
is unlikely to be valid near the putative QCP due to
fluctuation effects. (ii) The system is assumed isotropic
in spin space. The latter is in contradiction with the
sizeable spin-orbit coupling (SOC) observed in these sys-
tems [36], whose 100 K energy scale is comparable to
the typical magnetic transition temperature. As a re-

sult, the spin anisotropies induced by SOC [29], which
are experimentally observed by neutron scattering and
NMR [37–44], cannot be neglected near the magnetic
transition. More broadly, it is difficult to attribute the
observed near-degeneracy between the C2 and C4 phases
only to material-specific properties, since this behavior
is often seen close to the putative quantum critical point
(see schematic Fig. 1a) and in several different unrelated
compounds, such as hole-doped BaFe2As2 [12–15], pres-
surized FeSe [45], and electron-doped CaKFe4As4 [11].

In this paper, we argue that this behavior is not a re-
sult of fine-tuned interactions, but instead is a universal
property of the magnetism of the iron pnictides, provided
that SOC and fluctuations are taken into account. Al-
though this result is complementary to previous works
on this topic, it provides a significant departure from the
interpretation that the C2-C4 magnetic degeneracy arises
solely from band structure effects. Universal properties
are naturally described in terms of the renormalization-
group (RG) approach, which we employ throughout this
paper. The RG flow describes how the system’s mean-
field parameters are renormalized by fluctuations. This
allows us to assess the ground states and the character
of the corresponding phase transitions.

The main results of our RG analysis near the putative
magnetic QCP are shown schematically in Fig. 1(c). For
the isotropic system (horizontal line), the RG flow pushes
the system deep into either the C2 or to the C4 phase.
Moreover, the magnetic transition becomes first-order,
indicating the absence of quantum critical fluctuations.
Thus, even if the mean-field parameters (obtained e.g.
from band structure calculations) place the system close
to the degeneracy between the C2 and C4 phases, fluc-
tuations strongly remove this degeneracy. On the other
hand, upon including the spin anisotropy promoted by
the SOC (vertical line), a new fixed point in the RG flow
emerges, in which the C2 and C4 magnetic phases are de-
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FIG. 1. (Color online) (a) Schematics of our RG results.
The arrows show how fluctuations affect the coefficients of
the free energy, moving them away from their mean-field val-
ues derived from a microscopic bandstructure calculation. In
the spin-isotropic case, fluctuations bring the system deep
into either the C2 or a C4 phase, removing any fine-tuned
degeneracy from the system that may exist at a mean-field
level. When spin anisotropies are included, a new fixed
point emerges in which the C2 and C4 phases are degener-
ate. Systems whose mean-field parameters lie within the fan
of dashed lines are pushed to this fixed point by fluctuations.
(b) Schematic phase diagram based on our renormalization-
group (RG) calculations. Here, T is temperature and x is an
external tuning parameter, such as doping or pressure. As
the putative quantum critical point (QCP, denoted by a star)
is approached, the interplay between spin anisotropy (driven
by the spin-orbit coupling) and quantum fluctuations leads to
a near-degeneracy between the C2 and C4 magnetic phases.
While the C2 phase is always the stripe-spin density-wave
(SSDW) state, the C4 phase can be either the spin-vortex
crystal (SVC) or the charge-spin density-wave (CSDW) state
depending on whether the spin anisotropies force the moments
in the plane or out of the plane, respectively, see (c).

generate. Importantly, when the mean-field parameters
are within the basin of attraction of this fixed point (in-
dicated by the region between the dashed lines in the fig-
ure), the fluctuations will drive the system to the C2-C4

degenerate point. Indeed, the mean-field results of e.g.
Refs. 30 and 31 lie within this region. Thus, our main

point is that the experimentally observed proliferation of
nearly-degenerate C2 and C4 magnetic phases in the iron
pnictides is not a result of fine-tuning, but an emergent
universal property of the magnetism of these systems. In
the remainder of the paper, we derive these results and
discuss their implications for the superconducting state
of the pnictides.

Renormalization group flow of the isotropic case.–
Magnetic order in the iron pnictides is characterized
by two distinct ordering wave-vectors Q1 = (π, 0) and
Q2 = (0, π) (using single iron Brillouin zone notation).
The relative orientations and amplitudes of the magnetic
vector order parameters Mi allows three types of or-
der [6], as illustrated in Fig. 1: (i) A single-Q SSDW,
which takes place when only one of the Mi is non-zero.
This is the phase observed in most iron pnictide par-
ent compounds [46–48]. (ii) A collinear double-Q order
dubbed charge-spin density-wave (CSDW), correspond-
ing to M1 = ±M2. This phase is realized, e.g. in
Na-doped SrFe2As2 [13]. (iii) A coplanar double-Q or-
der dubbed spin-vortex crystal (SVC), characterized by
M1 ⊥ M2 and |M1| = |M2|. This phase is realized in
Ni-doped CaKFe4As4 [11]. Although the three types of
order share the same magnetic wave-vectors, they break
distinct symmetries of the lattice: the SSDW phase is
orthorhombic whereas the CSDW and SVC phases are
tetragonal [4, 6, 31].

To discuss the universal properties of the magnetic
phase diagram, we introduce the magnetic action in
terms of M1 and M2 [4, 5, 25, 28]. In the spin-isotropic
case, there are four terms allowed by tetragonal and time-
reversal symmetries:
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The coefficient of the quadratic term, r0(k) = r0 + k2 +
γ|ωn|, is the inverse bare susceptibility, with r0 ∝ x− xc
denoting the distance to the mean-field QCP xc. Here,
k is the momentum, ωn = 2πnT is the bosonic Mat-
subara frequency with temperature T , and γ is the
Landau damping coefficient arising from the decay of
magnetic excitations into particle-hole pairs. Note that

k = (iωn,k) and x = (τ, r) with
∫
k
≡ T

∑
ωn

∫
d2k

(2π)2 and∫
r
≡
∫ 1/T

0
dτ
∫

d2r. The quartic coefficient u > 0 penal-
izes strong amplitude fluctuations and ensures that the
free energy is bounded. The quartic coefficient g favors
either single-Q or double-Q configurations depending on
whether it is positive or negative, respectively. Similarly,
the quartic coefficient w favors collinear (w < 0) or copla-
nar (w > 0) double-Q configurations. The mean-field
phase diagram, obtained from straightforward minimiza-
tion [4, 32], is shown here in Fig. 2(a).

Microscopic calculations are needed to obtain the coef-
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ficients for specific materials. Different approaches have
been proposed, from first-principle to low-energy model
calculations [4, 5, 25–31]. Several of them have found
regimes in which, as function of doping, the quartic
coefficients change from favoring a C2 (i.e. single-Q)
phase to a C4 (i.e. double-Q) phase, an effect essentially
driven by changes in the band structure. Experimen-
tally, however, the emergence of near-degenerate C2-C4

phases is observed for systems with rather different band
structures, such as hole-doped BaFe2As2, electron-doped
CaKFe4As4, and undoped pressurized FeSe. This sug-
gests that the apperance of the C4 phase may be associ-
ated with the universal properties of the action (1), and
not only with material specific details.

To investigate this possibility, and go beyond the
mean-field analysis of previous works, we take into ac-
count the effects of fluctuations via a renormalizaton-
group (RG) calculation. In this approach, the micro-
scopic results discussed above provide the starting point,
which are the “bare” (i.e. mean-field) values of the quar-
tic coefficients u0, g0, and w0. Upon integrating out the
high-energy magnetic fluctuations from the cutoff energy
scale Λ to the energy E, these coefficients are renormal-
ized, and become functions of the ratio Λ/E, often ex-
pressed in terms of the variable ` ≡ ln

(
Λ
E

)
. Near the

putative magnetic QCP, the two-dimensional system is
at its upper critical dimension, and we can use standard
techniques [49] to derive the first-order differential RG
flow equations for u(`), g(`), and w(`). The goal is to
find the fixed points that govern the critical behavior of
these coefficients for a large number of different “initial
conditions” u0, g0, and w0, corresponding to different
microscopic band structures.

The RG equations of Eq. (1) have been previously
derived [50–53], but the fixed point analysis was gener-
ally restricted to the subspace of the SSDW phase. Our
global analysis reveals that, for three-component vectors,
no stable fixed points exist. Instead, the RG flow dis-
plays three fixed trajectories, in which the quartic coef-
ficients diverge at ` = `c, but their ratios remain fixed.
They are illustrated by the colored thick lines in Fig.
2(a): in all of them, u (`→ `c) → −∞, but the ratios
acquire different values. The blue fixed trajectory has
g (`c) /u (`c) = −1 and w (`c) /g (`c) = 0, corresponding
to a system deep inside the SSDW phase. The basin of at-
traction corresponds to the blue region of the mean-field
phase diagram in Fig. 2(a), implying that fluctuations
do not alter the nature of the mean-field ground state.
Similarly, the two other fixed trajectories are the red line
w (`c) /u (`c) = 1 and g (`c) /w (`c) = 0, corresponding to
a system deep inside the CSDW phase, and the green line
g (`c) /u (`c) = 0 and g (`c) /w (`c) = −1, corresponding
to a system deep inside the SVC phase.

Thus, fluctuations move the system deep into one of
the ordered phases, lifting any near-degeneracy between
the C2 and C4 phases obtained from microscopic models

in the mean-field level. This makes it difficult to explain
the proliferation of coexisting C2 and C4 phases near the
different optimal-doped compounds. Furthermore, the
action becomes unbounded at the fixed trajectories, in-
dicating a first-order quantum phase transition, and thus
no quantum critical fluctuations.

Renormalization group flow of the anisotropic case.–
A crucial ingredient missing in the analysis above is the
spin anisotropy that is generated by the spin-orbit cou-
pling present in these systems [36, 44, 54]. Indeed, ex-
perimentally, the magnetic moments of each configura-
tion are found to point to well-defined directions: in the
SSDW phase, the moments point in-plane, parallel to
the wave-vector direction [8]; in the SVC phase, the mo-
ments also point in-plane, making 45◦ with respect to
the wave-vector directions [11]; in the CSDW phase, the
moments point out-of-plane [13, 16] [see Fig. 1(b)]. At
the quadratic level, the spin-orbit coupling gives rise to
three different spin-anisotropic terms [29, 55]:
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The physical interpretation of each term is apparent: a
small α1 favors in-plane moments parallel to the wave-
vector directions; a small α2 favors in-plane moments
perpendicular to the wave-vector directions; and a small
α3 favors out-of-plane moments. While the SSDW sup-
ports any of these three magnetization directions, SVC
is only compatible with the α1 and α2 terms, and CSDW
only with the α3 term. Thus, the presence of spin
anisotropies makes it impossible for the three magnetic
ground states to be nearly degenerate, but they do allow,
in principle, for SSDW to be near-degenerate with either
CSDW or SVC.

Note that the anisotropy in the quadratic terms gen-
erates anisotropies in the quartic terms. While a full
solution of the RG equations is presented in Ref. 56, here
we focus on limiting cases that capture the main proper-
ties of the RG flow. Due to their scaling dimension, the
quadratic coefficients r0 + αi can display two possible
asymptotic behaviors as `→ `c. Either r0 + αi →∞, in
which case the associated spin components are quenched
and do not contribute to the action, or r0 + αi → −∞,
signaling a transition and the condensation of the spin
components related to αi. Importantly, the quadratic
coefficient αi with the smallest bare value selects which
components will condense.

Let us first consider the case of dominant in-
plane anisotropy, where initially α1 (` = 0) <
α2 (` = 0) , α3 (` = 0). The possible ground states
are the SSDW phase with moments pointing parallel to
the ordering vectors and the (hedgehog)-SVC phase [11],
see Fig. 1(b). According to the discussion above, only
the components associated with α1 (namely, Mx,1 and



4

FIG. 2. (Color online) (a) Mean-field magnetic phase diagram in the spin-isotropic case (colored background) and the RG flow
lines for the zero-temperature, two-dimensional system. There are three fixed trajectories where the quartic coefficients diverge
but their ratios remain finite. They are denoted by the thick darkly shaded lines, which lie deep inside each of the magnetic
states. Because the flow lines are projections onto the g-w plane, they appear to cross. (b)-(c) Flow diagrams for the cases
of dominant (b) in-plane spin anisotropy (α1 < α2, α3 or α2 < α1, α3) and (c) out-of-plane spin anisotropy (α3 < α1, α2).
Light gray areas denote regions in which the free energy is unbounded, corresponding to a first-order transition. The dark gray
regions are inaccessible to any flow. Here, darker colors denote the regions attracted to the Gaussian fixed point, while lighter
colors denote regions attracted to the fixed trajectories.

My,2) will condense, while the others can be neglected.
Hence, the universal properties of the action are the
same as those of the action (1) restricted only to the
Mx,1 and My,2 fields. As a consequence, w plays no role
in this case. The RG flow of this action is shown in
Fig. 2(b). Besides the two fixed trajectories equivalent to
the SSDW and SVC fixed trajectories of Fig. 2(b), a new
Gaussian fixed point uα1 (`c) = gα1 (`c) = 0 emerges.
Interestingly, we find a wide range of parameters for
which this Gaussian fixed point is attractive, indicated
by the region enclosed by the dashed lines in Fig. 2(b).
We note that the same phase diagram appears in the
case α2 (0) < α1 (0) , α3 (0).

In the case of dominant out-of-plane anisotropy,
α3 (0) < α1 (0) , α2 (0), the effective action has the same
form as Eq. (1), but restricted only to the Mz,1 and Mz,2

fields. In this case, w cannot be ignored although its ef-
fect can be incorporated in a shift of u and g, as seen in
the axes of Fig. 2(c). The possible ground states in this
case are the SSDW and CSDW with out-of-plane mo-
ments. As shown in Fig. 2(c), the RG flow is analogous
to the case of dominant in-plane-anisotropy. It displays
two fixed trajectories corresponding to the SSDW and
CSDW states, and the Gaussian fixed point where the
quartic coefficients vanish.

The main result of our analysis is the appearance of
an attractive Gaussian fixed point in the RG flow of the
anisotropic spin action. To understand its significance,
we first note that it signals a second-order quantum phase
transition (and thus quantum critical fluctuations), in
contrast to the case of fixed trajectories, which signals

first-order transitions. More importantly, at the Gaus-
sian fixed point, the SSDW state is degenerate with one
of the C4 phases – either the SVC phase for dominant
in-plane anisotropy or the CSDW phase for dominant
out-of-plane anisotropy. This degeneracy is due to the
fact that, when g = w = 0 in the action (1), the energies
of the C2 and C4 magnetic ground states have the same
value. The fact that the Gaussian fixed point has a wide
basin of attraction implies that, even if the bare (mean-
field) values of g and w are not near the phase boundary
between the C2 and the C4 phases, quantum fluctuations
will bring the system to this special point of the phase
diagram.

Discussion.– Our results provide a compelling sce-
nario to explain the experimentally observed prolifera-
tion of C4 phases in close proximity to the C2 symmetric
SSDW phase as optimal doping is approached in differ-
ent iron-based compounds [9–24]. Instead of attributing
this behavior to band structure effects, which requires
fine-tuning in a wide range of compounds, our approach
reveals that the emergence of C4 phases near the puta-
tive magnetic QCP is a universal property of the low-
energy magnetic properties of these materials. It arises
from the interplay between spin-orbit coupling and mag-
netic fluctuations. We emphasize that these results are
not contradictory, but complementary to the microscopic
calculations [4, 5, 25–31]. In fact, our results in tan-
dem with the mean-field results of e.g. Refs. 30 and 31
show that as long as the band structure effects bring the
system closer, rather than farther from the degeneracy
points, fluctuations will take over and move the system
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closer to the degeneracy point. Importantly, this effect
is prominent near the putative magnetic QCP, when the
system is at its upper critical dimension. This sheds new
light on why the proliferation of C2 and C4 phases takes
place near optimal doping, where the magnetic transition
temperature is suppressed to zero.

An important question is how this emergent C2-
C4 near-degeneracy impacts superconductivity. Several
works have proposed an s+− state driven by fluctuations
of the SSDW state [1–3]. Usually, the existence of addi-
tional channels of magnetic fluctuations does not guar-
antee an enhancement of Tc. On the contrary, in the case
of ferromagnetic [57] or Néel fluctuations [58], they can
cause pair-breaking and promote competing supercon-
ducting states that suppress Tc of the s+− state. In our
case, however, fluctuations associated with the C2 and
C4 phases are peaked at the same wave-vectors (π, 0) and
(0, π), and thus support the same pairing state. There-
fore, one expects that this near-degeneracy, by enhancing
the phase space of fluctuations, may cause an enhance-
ment of Tc.
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