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Quantum gravity corrections have been speculated to lead to modifications to space-time geometry near black
hole horizons. Such structures may reflect gravitational waves, causing echoes that follow the main gravitational
waves from binary black hole coalescence. By studying two phenomenological models of the near-horizon
structures under Schwarzschild approximation, we show that such echoes, if exist, will give rise to a stochastic
gravitational-wave background, which is very substantial if the near-horizon structure has a near unity reflectiv-
ity for gravitational waves, readily detectable by Advanced LIGO. In case the reflectivity is much less than unity,
the background will mainly be arising from the first echo, with a level proportional to the power reflectivity of
the near-horizon structure, but robust against uncertainties in the location and the shape of the structure — as
long as it is localized and close to the horizon. Sensitivity of third-generation detectors allows the detection of
a background that corresponds to power reflectivity ∼ 3 × 10−3, if uncertainties in the binary black-hole merger
rate can be removed. We note that the echoes do alter the f 2/3 power law of the background spectra at low
frequencies, which is rather robust against uncertainties.

PACS numbers:

Introduction.– Black holes (BH) are monumental predictions
of general relativity (GR) [1]. It is often believed that, inside a
BH, a singularity exists, around which classical GR will break
down and must be replaced by a full quantum theory of gravity
(QTG). The Planck scale of lP ∼ 1.6×10−35 m is often cited as
the scale at which full-blown QTG is required. However, in-
teresting effects already arise as one applies quantum mechan-
ics to fluctuations around the BH horizon, the boundary of the
region from which one can escape toward infinity, even though
space-time curvature does not blow up here. Hawking showed
that BHs evaporate, leading to the so-called Black-Hole Infor-
mation Paradox. During attempts to resolve this Paradox —
as well as in other contexts — it was proposed that space-time
geometry near the horizon may differ from the Kerr geome-
try, by having additional, quantum structures [2]. Candidate
proposals include firewall [3], fuzzball [4] and gravastar [5].

Detection of gravitational waves (GW) generated by binary
black-hole (BBH) collisions marked the dawn of GW astron-
omy [6], and brings an experimental tool to study the nature of
BH horizon. Cardoso et al. proposed that geometric structures
very close to the horizon can be probed by GW echoes that fol-
low BBH waves, arising from the reflection from these struc-
tures, and the subsequent rebounds between these structures
and the BH potential barrier [7, 8]. Whether the observed indi-
vidual GW events have already provided positive experimen-
tal evidence towards the echoes is still under debate [9–11].
Furthermore, the particular echo model employed by [9, 10]
was considered rather naive and needed refinement [12, 13].
For example, Mark et al., using scalar field generated by a
point particle falling into a Schwarzschild BH, illustrated that,
the echoes can have a variety of time-domain features, which
depend on the location, and (in general frequency-dependent)
reflectivity of the near-horizon structure [14]. Echo structure
during the entire inspiral-merger-ringdown wave was also an-

alyzed in the Dyson series formalism in Ref. [15].
In this letter, we propose to search for near-horizon struc-

tures via the stochastic GW background (SGWB) from BBH
mergers. Because the echo contribution to the background
depends only on their energy spectra, it is much less sensi-
tive to details of echo generation, making the method more
robust against uncertainties in the near-horizon structures. We
estimate the magnitude and rough feature of this SGWB, and
illustrate its dependence on the near-horizon structure, follow-
ing an Effective One-Body (EOB) approach: the two-body
dynamics and waveform is approximated by the plunge of a
point particle toward a Schwarzschild BH, following a trajec-
tory that smoothly transitions from inspiral to plunge [16, 17].
GW amplitudes and power emitted.– GWs emitted from a test
particle plunging into a Schwarzschild BH can be described
by the Sasaki-Nakamura (SN) equation [18]:(

∂2
r∗ + ω2 − Vl(r)

)
Xlm(ω, r∗) = S lm(ω, r), (1)

where r∗ is the tortoise coordinate with dr/dr∗ = 1 − 2M/r
with effective potential given by

Vl(r) =

(
1 −

2M
r

) (
l(l + 1)

r2 −
6M
r3

)
. (2)

with M the mass of the BH. The source term is given by
S lm(ω, r) = Wlm(ω, r)r−5e−iωr∗ , where Wlm is a functional of
the trajectory of the test particle and its explicit expression
can be found in Eqs. (19)—(21) of [18]. The wave function
Xlm is related to GW in the r → +∞ limit via h+ + ih× =

8r−1 ∑
lm −2YlmXlm(t), where sYlm are spin-s weighted spher-

ical harmonics and Xlm(t) =
∫ +∞

−∞
dω e−iωtXlm(ω). The GW

energy spectrum is given by

dE/dω =
∑
lm

16πω2|Xlm(ω, r∗ → ∞)|2. (3)
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FIG. 1: Trajectory of the EOB effective particle moving in a coa-
lescing quasi-circular orbit. The symmetric mass ratio ν = 0.25.
The inner black sphere with radius 2M represents the horizon of a
Schwarzschild BH. The outer translucent sphere with radius 3M rep-
resents the photon sphere.

For BHs, imposing in-going boundary condition near the hori-
zon and out-going condition near null infinity, solution to
Eq. (1) is expressed as X(0)

lm (ω, r∗ → ∞) = eiωr∗Z(0)
lm (ω), with

Z(0)
lm (ω) =

∫ +∞

−∞

dr′∗
[
S lm(ω, r′∗)X

(0)
in (ω, r′∗)

]
/W (0)(ω), (4)

with W (0) = X(0)
in ∂r∗X

(0)
out − X(0)

out∂r∗X
(0)
in the Wronskian between

the two homogenous solutions, with X(0)
in ∼ e−iωr∗ for r∗ →

−∞ and X(0)
out ∼ e+iωr∗ for r∗ → +∞, respectively.

Echoes from near-horizon structure.– Let us now modify
the Schwarzschild geometry near the horizon by creating a
Planck-scale potential barrier Vp: Vl → Vl + Vp, with Vp cen-
tered at rp = 2M + ε, with ε � M; In tortoise coordinate,
ε = lp corresponds to rp

∗ ≈ −182M. As discussed by [14] the
effect of Vp is the same as replacing the horizon (r∗ → −∞)
boundary condition for Eq. (1) by

X(R)
in ∼ e−iωr∗ + Reiωr∗ for r∗ → rp

∗ , (5)

while keeping the r∗ → +∞ boundary condition unchanged.
Here, R(ω) can be viewed as a complex reflectivity of the po-
tential barrier [33], the location of reflection is implicitly con-
tained in its frequency dependence; for example, a Dirichlet
boundary condition corresponds to RD(ω) = −e−2iωrp

∗ [34] .
Defining X(R)

lm = Z(R)
lm eiωr∗ , Z(R)

lm can be written as a sum the
main wave (for BH) and a series of echoes [14]:

Z(R)
lm = Z(0)

lm + RZ(1)
lm

+∞∑
n=0

(RRBH)n, (6)

with RBH the complex reflectivity of the Regge-Wheeler po-
tential Vl [see Eq. (2.14) of [14]] and

Z(1)
lm (ω) =

∫ +∞

−∞

dr′∗
S lm(ω, r′∗)X̄

(0)
in (ω, r′∗)

W (0)(ω)
+ RBHZ(0)

lm , (7)

with X̄(0)
in the complex conjugate of X(0)

in .
Note that each echo delayed from the previous one by ∼

2|rp
∗ | in the time domain. For small R, we write Z(R)

lm ≈ Z(0)
lm +

RZ(1)
lm and(
dE
dω

)
R
≈16πω2

∑
lm

[∣∣∣Z(0)
lm

∣∣∣2 +
∣∣∣RZ(1)

lm

∣∣∣2 + 2Re(RZ(1)
lm Z̄(0)

lm )
]
. (8)

This is the sum of energies from main wave, the first echo, and
the beat between the main wave and the first echo. While the
beat is linear in R, it is highly oscillatory in ω, since the main
wave and the echo are well separated in the time domain.
Models of Reflectivity and Energy Spectra of Echoes.– With-
out prior knowledge about details of near-horizon structures,
we only assume it is short-ranged and localized at rp

∗ . The
simplest would be to introduce a δ-potential Vp = A δ[(r∗ −
rp
∗ )/M], with parameter A defined as the area under the

Planck potential: A = M
∫ +∞

−∞
Vp dr∗. Note thatA is a dimen-

sionless quantity. As a comparison, the area under the Regge-
Wheeler potential is [19] M

∫ +∞

−∞
Vl dr∗ = (l−1)(l+2)/2+1/4.

Such a model corresponds to a reflectivity

R(ω) = e−2iωrp
∗A/(2iMω −A) . (9)

This is more physical than the Dirichlet case, by reducing |R|
at larger ω. Since |R(0)| = 1 and R(+∞) = 0 are general prop-
erties of all physical potentials, we expect Eq. (9) to describe
a large class of near-horizon quantum structures. To further
explore the shape of Vp, we also study the Pöschl-Teller po-
tential [20] Vp = α2λ(1 − λ)/M2 cosh−2[α(r∗ − rp

∗ )/M]. Di-
mensionless parameters α and λ are related to the area under
Vp viaA = 2αλ(1− λ). The corresponding reflectivity is [21]

R(ω) = e−2iωrp
∗

Γ(i Mω
α

)Γ(λ − i Mω
α

)Γ(1 − λ − i Mω
α

)

Γ(−i Mω
α

)Γ(1 − λ)Γ(λ)
, (10)

where Γ(·) is the Gamma function. In the following, we will
keepA fixed and vary α and λ to explore shapes of Vp.

To estimate of the echoes’ energy spectrum, we adopt the
EOB approach [16, 17]: for BHs with m1 and m2, we con-
sider a point particle with reduced mass µ = m1m2/(m1 + m2)2

falling down a Schwarzschild BH with total mass M = m1 +

m2; the symmetric mass ratio is defined as ν = µ/M. For
motion in the equatorial plane, we have a Hamiltonian for
(r, pr, φ, pφ), with radiation reaction incorporated as a gener-
alized force Fφ [Eqs. (3.41)–(3.44) of [17]]. Upon obtaining
the trajectory (see Fig. 1 for ν = 0.25), we obtain source term
S lm, and compute Z(0)

lm and Z(1)
lm using Eqs. (4) and (7), which

will then lead to the GW energy spectrum.
We will focus on the (l,m) = (2, 2) mode, which carries

most of the GW energy.
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FIG. 2: The main wave Z(0)
22 and the wave Z(1)

22 that generates echoes
via Eq. (6).
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FIG. 3: The energy spectra of GW emission from ν = 0.25 coalescing BBH. Upper Panel: energy spectra for different values ofA, for ε = lp,
with R given by Eq. (9). Left Panel: energy spectra for different values of ε, forA = 0.5 with R given by Eq. (9) . Right Panel: energy spectra
for different values of α, for ε = lp, with R given by Eq. (10), fixingA = 2αλ(1 − λ) = 0.5.
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FIG. 4: The influence to the fiducial [22] BBH SGWB with varied areas, locations and shapes of the near-horizon potential. Left Panel: The
spectral energy density ΩGW( f ) for different values of A; reflectivity given by Eq. (9) with ε = lp. Right Panel: ΩGW( f ) for different values
of ε (dashed) and α (dotted); reflectivity given by Eq. (9) with A = 0.5 (dashed) as well as Eq. (10) with 2αλ(1 − λ) = 0.5, ε = lp (dotted)
respectively.

As seen in Fig. 2, the main wave |Z(0)
22 | recovers the f −7/6

power law at low frequencies, as predicted by post-Newtonian
approximation, also qualitatively mimics a BBH waveform at
intermediate (merger) to high frequencies (ringdown). Note
that the ringdown makes the the |Z(0)

22 | curve turn up slightly
near the leading (2, 2) Quasi-Normal Mode (QNM) frequency
of the Schwarzschild BH before sharply decreasing, similar to
Fig. 3 of Ref. [23]. The wave |Z(1)

22 | peaks roughly at the QNM
frequency.

Horizon structures withA of order unity lead to significant
modifications in GW energy spectrum dE/dω. In the upper
panel of Fig. 3, we choose the reflectivity (9) with ε = lp and
A = 0.25, 0.5, 0.75 and 1. At low frequencies, near-horizon
structures add peaks separated by ∆ω ∼ 0.017M−1 ∼ π/rp

∗

to the post-Newtonian dE/d f ∝ f −1/3. These resonant peaks
are related to the poles of 1/(1 − RRBH) in the series sum of
Eq. (6). Near the QNM frequency, there is substantial addi-
tional radiation, which is due to the large value of |Z(1)

22 |. In the
left panel, we choose several different values of ε which lead

to different peak separation at low frequencies. In the right
panel, we consider reflectivity (10) and find that the shape of
the Planck potential, as characterized by α, has negligible in-
fluence to dE/dω as long as the area keeps fixed.
Stochastic Gravitational-Wave Background (SGWB).– The
SGWB is usually expressed as Ω( f ) = ρc

−1dρGW/d ln f ,
where ρc represents the critical density to close the universe
and ρGW the GW energy density; it is related the dE/d f of a
single GW source via [24]

Ω( f ) =
f
ρc

∫ zmax

0
dz

Rm(z)[dE/d f ] fz

(1 + z)H(z)
, (11)

where fz = f (1 + z) is the frequency at emission. Here
we adopt the ΛCDM cosmological model with H(z) =

H0[ΩM(1 + z)3 + ΩΛ]1/2, where the Hubble constant H0 =

70km/s Mpc, ΩM = 0.3 and ΩΛ = 0.7. Rm(z) is the BBH
merger rate per comoving volume at redshift z. We use the
fiducial model described in [22], where Rm(z) is proportional
to the star formation rate with metallicity Z < Z�/2 and
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FIG. 5: ∆ΩGW as functions of f , for A = 0.3, 0.1 and 0.03, and
ε/M = (lP/M)1/2,1,3/2,2, reflectivity (9). Here ∆Ω ∝ A2, except for
the oscillations shown for small values of A and larger values of ε,
when the beat term of Eq. (8) is not completely smoothed out. Other
parameters are the same as in the fiducial model [22].

delayed by the time between BBH formation and merger.
As in the Fiducial model, the parameters of BBH follow
GW150914: M = 65M�, ν = 0.25 with a local merger rate
Rm(0) = 16Gpc−3 yr−1.

For A ∼ 1, we get substantial additional SGWB from the
echoes (left panel of Fig. 4) in a way that is insensitive to the
location and shape of the near-horizon structure, as character-
ized by ε and α (right panel). This robustness indicates the
area under the Planck potential is the most relevant observ-
able of the near-horizon structures in SGWB. For smaller A,
we plot the additional SGWB, defined as ∆Ω ≡ ΩA>0 −ΩA=0
in Fig. 5. Here ∆Ω is approximately ∝ A2, for A > 0.03 and
ε/M <

√
lPM: beating between the main wave and the echoes

Eq. (8) is unimportant, and the additional SGWB mainly arise
from energy contained in the first echo.
Detectability.– The optimal signal-to-noise ratio (SNR) for a
SGWB between a pair of detectors is given by

√
〈Ω|Ω〉 [25],

with

〈ΩA|ΩB〉 ≡ 2T
 3H2

0

10π2

2 ∫ +∞

0
d f

ΩA( f )γ2( f )ΩB( f )
f 6P1( f )P2( f )

, (12)

where γ( f ) is the normalized overlap reduction function be-
tween the detectors, and P1,2( f ) are the detectors’ noise spec-
tral densities. We consider advanced LIGO at design sensi-
tivity [23], LIGO Voyager [26] and Einstein Telescope (ET)
[27] at planned sensitivities. Advanced LIGO and LIGO Voy-
ager have the same γ and we take the constant γ = −3/8 for
co-located ET detectors [28]. The 1-year SNRs are listed in
Table I for values ofA at order unity, in which case the echoes
contribute significantly to the SNRs.

For lower values of A, we apply the model-selection
method of Ref. [25] to distinguish the SGWB with and with-
out echo contributions. The log-likelihood ratio (LR) between
two models is given by ln Λ = 〈∆Ω|∆Ω〉/4 and two mod-
els considered discernible when ln Λ > c > 1. Here we
choose c = 12, which corresponds to a false alarm rate of 10−6

[29]. Minimum distinguishable A to reach this LR threshold
is shown in Tab. II; with 5-year integration, Voyager can de-
tectA ≈ 0.21, while ET can detectA ≈ 0.042.

A LIGO Voyager ET
0 1.42 27.5 196

0.25 1.60 30.8 270
0.5 2.15 40.9 513
1 3.99 75.2 1215
2 8.76 164.7 2561

TABLE I: One-year SNR of three generations of GW detectors for
SGWB ΩA, varying A. The reflectivity corresponds to Eq. (9) with
ε = lp. Other parameters are the same as in the fiducial model [22].

T LIGO Voyager ET
1 yr 1.87 0.32 0.062
5 yrs 1.07 0.21 0.042

TABLE II: The minimal distinguishable A to reach a log-likelihood
ratio ln Λ > 12 for current and future GW detector with different
integration times. The reflectivity corresponds to Eq. (9) with ε = lp.
Other parameters are the same as in the fiducial model [22].

Conclusions and Discussions.– As we have seen in this paper,
the ∆Ω due to the echoes is largely independent from uncer-
tainties in rp

∗ . For strong near-horizon structures, with A the
order of unity, SGWB from the echoes will be clearly visible.
For weak near-horizon structures, ∆Ω is mainly given by the
first echo, and is simply proportional to the power reflectivity
|R|2. The level detectable by ET corresponds to A ∼ 0.042,
which corresponds to |R|2 ≈ 3×10−3 near the peak of the echo
energy spectrum. Further details of the background not only
depends on details in the Planck potential barrier Vp, we will
also need to generalize the analysis to a Kerr BH.

Uncertainties also exist in the SGWB of the main, insprial-
merger-ringdown wave, e.g., arising from different star for-
mation rates, different metallicity thresholds to form BHs, de-
tails in the evolution of binary stars and the distributions in
the time delay between BBH formation and merger — all of
these lead to uncertainties in the local BBH merger rate and
the local distribution of mass M and symmetric mass ratio
ν [22]. It is believed these uncertainties will be well quanti-
fied and narrowed down by future BBH detections. For ex-
ample, the range of BBH local merger rate has been narrowed
down to 12 − 213 Gpc−3 yr−1 using GW170104 [30]. On the
other hand, as demonstrated by Zhu et al., these uncertainties
only scale the background spectra linearly at low frequencies
and hence keep the power law Ω( f ) ∝ f 2/3 for f < 100 Hz
unchanged [24]. Our result shows the appearance of the near-
horizon structures changes the slfaope of Ω( f ), making it de-
vaite from the f 2/3 power law even at low frequencies. This
may be used to alleviate the influence from uncertainties.

In addition to BBH, binary neutron star (BNS) mergers also
contribute to the background with a comparable magnitude
[31]. Within the bandwidth of ground-based GW detectors,
this background arises solely from inspiral, which gives an
f 2/3 power law and is not influenced by the presence of the
near-horizon structure. As a result, the echo SGWB ∆Ω re-
mains unchanged and our analysis on detectability still holds.
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Echoes may also be detectable from individual events. Our
calculations indicate for an event similar to GW150914, to
reach an echo SNR of 10 the value of A should be at least
0.24 (LIGO), 0.050 (Voyager) and 0.011 (ET), respectively.
However, in the matched filtering search of individual signal,
the exact waveform is required, which in our model depends
not only on A, but also on ε and α, but may depend fur-
ther on other unknown details of the Planck-scale potential
— making it less robust. An analysis combined both back-
ground and individual signals will be presented in a separate
publication[32].
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