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Quantum error correction with only two extra qubits
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Noise rates in quantum computing experiments have dropped dramatically, but reliable qubits
remain precious. Fault-tolerance schemes with minimal qubit overhead are therefore essential. We
introduce fault-tolerant error-correction procedures that use only two extra qubits. The procedures
are based on adding “flags” to catch the faults that can lead to correlated errors on the data. They

work for various distance-three codes.

In particular, our scheme allows one to test the [5,1, 3] code, the smallest error-correcting code,
using only seven qubits total. Our techniques also apply to the [7,1,3] and [15, 7, 3] Hamming codes,
thus allowing to protect seven encoded qubits on a device with only 17 physical qubits.

Quantum computers will need protection from noise.
A delicately designed circuit can correct errors, and even
tolerate faults within itself [1]. However, while there
have been experimental tests of quantum codes [2-8],
testing fault-tolerant error correction remains a major
challenge. A main difficulty is the substantial overhead;
many physical qubits are needed for each encoded, logical
qubit. This means that on small- and medium-scale
systems in the near future, it will be difficult to test fault-
tolerance theory, and to explore the efficacy of different
fault-tolerance schemes. It is important to reduce this
overhead.

Limited fault-tolerance schemes have been tested on
five-qubit systems [9-12], using the [4,2,2] code. This
code encodes two qubits into four, and the fifth qubit is
used for error detection [13]. Since the code has distance
two, it can only detect an error, not correct it.

Until recently, the smallest known scheme that can
correct an error used the [9,1, 3] Bacon-Shor code, plus a
tenth extra qubit. Although smaller, more efficient error-
correcting codes are known, such as the [5,1, 3] perfect
code (the smallest distance-three code), fault-tolerance
schemes using these codes have still required at least
ten qubits. For example, Shor-style syndrome extraction
requires w + 1 [14] or w [15] extra qubits, where w is the
largest weight of a stabilizer generator. Steane-style error
correction for CSS codes [16, 17] uses at least a full code
block of extra qubits.

Yoder and Kim [18] have given fault-tolerance schemes
using the [5,1, 3] code with eight qubits total, and the
[7,1, 3] Steane code with nine qubits total. Extending the
latter construction, we introduce fault-tolerance proce-
dures that use only two extra qubits. Table I summarizes
some suitable, distance-three codes and compares the
qubit overhead of our scheme to other methods. (In par-
ticular, in App. A [19] we generalize [18, 20]: the “decoded
half cat state” method uses max{3, [w/2]} extra qubits.)

For example, with the [5, 1, 3] code our scheme uses only
seven qubits total, or ten qubits with the [8, 3, 3] code. A
particularly promising application is to the [15, 7, 3] Ham-
ming code: 17 physical qubits suffice to protect seven en-
coded qubits. In [21] we give fault-tolerant procedures for

applying arbitrary Clifford operations on these encoded
qubits, also using only two extra qubits, and fault-tolerant
universal operations with four extra qubits, 19 total. Sub-
stantial fault-tolerance tests can therefore be run on a
quantum computer with fewer than twenty qubits.

Our procedures here are based on adding “flags” to the
syndrome-extraction circuits in order to catch the faults
that can lead to correlated errors on the data. Figure 1(c)
shows an example. Provided that syndromes are extracted
in a careful order, detecting the possible presence of a
correlated error is enough to correct it.

Flagged error correction for the [5,1,3] code. The
perfect [5,1,3] code [22] has the stabilizer generators,
and logical X and Z operators of Fig. 1(a).

The syndrome for the first stabilizer, XZZ X1, can be
extracted by the circuit in Fig. 1(b), where Z indicates

a |0), |1) measurement, and & = I However, this
circuit is not fault tolerant. For example, if the second
gate fails and after it is applied an I Z fault, then this fault
will propagate through the subsequent gates to become
an IIZXI error on the data. Thus a single fault can
create a weight-two error on the data, and even a perfect
error-correction procedure will correct this error in the
wrong direction, creating the logical error IIZXZ ~ X.

To fix this problem, we instead extract the X ZZ X I syn-
drome using the circuit in Fig. 1(c). With no faults, this
circuit behaves exactly the same as that of Fig. 1(b), and
the X-basis (|4+),|—)) measurement will always give |+).
The purpose of the extra |+) qubit, which we term a “flag,”
is to detect gate faults that can propagate to correlated
errors, weight two or higher, on the data. Failures after
gates a and d cannot create correlated errors. The failures
after gates b and ¢ that can create correlated errors are
listed in Fig. 1(d). (Y failures on the second qubit have
the same effect on the data as Z failures.) These failures
will all be detected, causing a |—) measurement outcome.
Moreover, observe that the seven distinct data errors have
distinct, nontrivial syndromes.

The complete error-correction procedure is given by:

1. Use the circuit of Fig. 1(c) to measure XZZXI.
(a) If the flag qubit is measured as |—), then use the un-
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FIG. 1. Flagged syndrome extraction for the [5,1,3] code. (a) Stabilizers and logical operators. (b) Circuit to extract the

syndrome of the X ZZ X stabilizer into an extra qubit. This is not fault tolerant because a fault on the extra qubit can spread
to a weight-two error on the data. (c) This circuit also extracts the X ZZ X1 syndrome, and if a single fault spreads to a data
error of weight > 2 then the X measurement will return |—), flagging the failure. (d) The nontrivial data errors that can result
from a single gate failure in (c) that triggers the flag; these errors are distinguishable by their syndromes and so can be corrected.

flagged circuits analogous to Fig. 1(b) to extract all
four syndromes. Finish by applying the correspond-
ing correction from among IT111, [IZXI, IXZXI,
IYZXI, IZZXI, IT1IXI, ITXXI, IITYXI.

(b) Otherwise, if the syndrome is —1, i.e., the syndrome
qubit is measured as |1), then use unflagged circuits
to extract all four syndromes. Finish by applying
the corresponding correction of weight < 1.

2. (If the flag was not raised and the syndrome was 1, then)
Similarly measure IXZZX. If the flag is raised, then
use unflagged circuits to extract the four syndromes,
and finish by applying the correction from among
IIIIL, TTIIX, IXXII, 111XX, XIIIY, IXIII,
I11ZX, IIIYX. If the syndrome is —1, then use
unflagged circuits to extract the four syndromes, and
finish by applying the correction of weight < 1.

3. Similarly measure XIXZZ, and correct if the flag is
raised or the syndrome is nontrivial.

4. Similarly measure ZXIXZ, and correct if the flag is
raised or the syndrome is nontrivial.

We now argue that this procedure is fault tolerant ac-
cording to the extended rectangle formalism for distance-
three codes [23].

e If there are no faults, then it appropriately corrects the
data to the codespace.

e If the data lies in the codespace and there is at most
one faulty gate in the error-correction procedure, then:

— If all syndromes and flags are trivial, then the data
can have at most a weight-one error. (No correction
is applied.)

— If a flag is raised or a syndrome is nontrivial, then
the subsequent unflagged syndrome extractions are
perfect, and suffice to correct either a possibly corre-
lated error (if the flag is raised) or a weight < 1 error
(if no flag is raised but the syndrome is nontrivial).

Let us point out that when a syndrome extracted by a
flagged circuit is nontrivial, then even if the flag is not
raised we still extract all four syndromes (using unflagged
circuits) before applying a correction. This is because

a fault on the data could have been introduced in the
middle of syndrome extraction. For example, if we extract
the first syndrome as +1, but a Z; error is then added
to the data, the remaining syndromes will be +1, —1, +1.
The correction for (4,4, —, +) is Z3, but were we to apply
this correction the data would end up with error ZIZI1.
This moral is that nontrivial syndromes cannot be trusted
unless they are repeated.

Flagged error correction for Hamming codes. The Ham-
ming codes are a family of [2" — 1,2 — 1 — 2r, 3] quantum
error-correcting codes, for r > 3 [24, 25]. They are self-
dual perfect CSS codes.

As an example, consider the r = 4, [15,7,3] code,
whose four X and four Z stabilizers are given by the
parity checks of Fig. 2(a).

For a subset S, let Zg = [[;c5Z;. The circuit of
Fig. 2(b) extracts the first Z syndrome, for Zig . 15). As

TABLE I. Extra qubits required for fault-tolerant syndrome-
extraction methods, including Shor’s cat state method and
the Stephens-Yoder-Kim decoded half cat state method. Our
flagged error-correction procedure needs only two extra qubits,
as observed for the 7,1, 3] code by [18]. Codes marked ¢ are
Hamming codes.

Code qubits Extra qubits required for
Shor Decoded

Physical Logical cat state half cat  Flagged
5 1 5 3 2

7 10 5 3 2 [18]
9 1 1 -
8 3 7 3 2
10 4 9 4 2
11 5 9 4 2
15 7o 9 4 2
31 210 17 8 2
2" —1 2" —1-2ro 277" 41 2" 2 2
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FIG. 2. Flagged syndrome extraction for Hamming codes.

(a) [15,7,3] code parity checks. (b) Flagged circuit to extract
the Z(g, ... 15} syndrome fault tolerantly.

in Fig. 1(b), any single gate fault that leads to a data
error of weight > 2 will also make the X measurement
output |—). Moreover, if that measurement gives |—) with
a single fault, the error’s possible Z components are

1,73, Z(8,9}, Z{8,9,10}» £{8,9,10,12} » £{8,9,10,11,12} 5
Z(8,9,10,11,12,14} > £{8,9,10,11,12,13,14}

These errors are distinguishable by their X syndromes.
Similar circuits work for the other stabilizers, thus giv-
ing a two-qubit fault-tolerant error-correction procedure
for the [15,7,3] code.
Similar schemes work for all Hamming codes:

Claim. Syndromes for the [2" —1,2" —1—2r, 3] Hamming
code can be fault-tolerantly extracted with two qubits.

Proof. Consider the stabilizer Zyyr—1  or_13. As in
Fig. 2(b), we give a permutation of the last 2"~ qubits
so that, when the flag is triggered, the possible Z errors
have distinct syndromes.

Let p(z) be a degree-(r — 1) primitive polynomial over
GF(2). For j =0,...,2"71 — 2, let ¢;(z) = 27 mod p;
these are distinct polynomials of degree < r — 2. Further-
more, the remainders of their cumulative sums, Zg:o x,
are also distinct. (Otherwise, if 0 = 29+ + ... + 2% =
29+t (2%=9 4 1) /(z + 1), then considering the lowest-order
terms give 2¥77 41 = 0, contradicting that p is primitive.)

The desired permutation is 2”71, go(2) + 2771, ¢1(2) +
2" gar1_5(2) + 2771 To see this, identify both
qubit indices and syndromes with polynomial coefficients,
and then combine the above two properties. O]

Other distance-three codes. Figure 3 presents [8, 3, 3],
[10,4,3] and [11,5, 3] codes [25-27].

The property required for our flagged procedure to
work is: for measuring an operator Z1 2573 ...7Z, (up
to qubit permutations and local Clifford unitaries), the
different errors P;Zj1 ... 2y, for P € {I,X,Y,Z} and
j€{2,...,w— 1}, should have distinct and nontrivial
syndromes. (For a CSS code, for which X and Z errors can
be corrected separately, it is enough that the syndromes
for different errors be different for P € {I,Z}.)

<N~ N
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FIG. 3. (a) Stabilizers for an [8, 3, 3] code. (b) Stabilizers for

(
a [10, 4, 3] code, based on the [5,1, 3] code [26]. (c) Stabilizers
for an 11,5, 3] code.

This property indeed holds for some qubit permutation
of each of the stabilizer generators for the [11,5, 3] code.

For the [10, 4, 3] code, there are permutations that work
for stabilizers X®'0 and Z®10, which can detect any single-
qubit error. For example, the order 1,2, 3,4,6,7,5,8,9,10
works for both. (With 1,2,...,10, the errors ZgX;o and
Y6X(7.89,10y have the same syndrome.) If an error is
detected or the flag is triggered, the stabilizers can all be
measured without flags to diagnose the problem.

For the [8, 3, 3] code, there are no valid permutations
for X®® and Z%8. Instead, to detect single-qubit errors
we can measure with flags XXY ZIYZI ZZIXYIXY
and IIZYXZY X.

Therefore, for all of these codes, two extra qubits are
enough to fault-tolerantly extract the syndromes and
apply error correction [28].

Flagged error detection for [n,n —2,2] codes. The idea
of flagging faults that can spread badly is also useful for
error-detecting codes.

For even n, the [n,n — 2,2] error-detecting code has
stabilizers X®" and Z®", and logical operators X; =
XlXj+1, Zj = Zj+1Zn for j = 1, ey, — 2.

Observe that extracting a syndrome with a single extra
qubit is not fault tolerant because, for example, a Z fault
at either location indicated with a % in Fig. 4(a) results
in an undetectable logical error. With a flag qubit, the
circuit is fault tolerant; any single fault is either detectable
or creates no data error.

This approach works for any n. One way of interpreting
it is that the extra qubit is encoded into the two-qubit
Z-error detecting code, with stabilizers X X and logical
operators X = XI and Z = ZZ. This code detects the
single Z faults that can propagate back to the data.

Simulations and conclusion. In order to get a sense for
the practicality of the two-qubit error-correction schemes,
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FIG. 4. (a) Circuit to extract the Z®" syndrome. (b) Adding
a flag makes it fault tolerant.
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FIG. 5. Comparison to previous error-correction schemes.
Two-qubit error correction (®) slightly outperforms Shor-style
correction (a) for the [5,1, 3] code, and both Shor- and Steane-
style (=) error correction for the [7,1, 3] code. For the [15,7, 3]
code, Steane’s method performs best. Logical error rates
are plotted divided by p? to reveal leading-order coefficients,
and p, 3p,4p and Tp, i.e., error rates without encoding, are
plotted to help judge pseudo-thresholds [29]. Two-qubit error
correction for the [8,3,3] (e) and [10,4, 3]
achieve higher pseudo-thresholds.

(®) codes can

we simulate error correction using a standard depolariz-
ing noise error model on the one- and two-qubit opera-
tions [30]. (The source code is available [19].) Figure 5
shows the results from simulating at least 10 consecutive
error-correction rounds for each value of the CNOT failure
rate p. Observe that for the [15,7,3] code, Steane-style
error correction, which extracts all stabilizer syndromes
at once, performs better than either the Shor-style or two-
qubit procedures. For the [5,1,3] and [7, 1, 3] codes, the
different error-correction methods are all very close. By
carefully using their stabilizer generators in the flagged
schemes, multi-qubit block codes like the [8,3,3] and
[10,4, 3] codes give higher pseudo-thresholds.

Note that these simulations do not introduce memory
errors on resting qubits, nor add errors for moving qubits
into position to apply the gates. See [19] for simulations
with rest errors; as one may expect, the advantage of

the two-qubit schemes over Steane’s scheme could reverse
when the memory error increases.

We have focused on extracting syndromes using two ex-
tra qubits in order to minimize the qubit overhead. With
just one more qubit, however, fault-tolerant syndrome
extraction becomes considerably simpler. Consider for
example the circuit in Fig. 6(a) for extracting a ZZZZ
syndrome. Every CNOT gate into the syndrome qubit has
its own flag, to catch Z faults that can lead to correlated
Z errors on the data. The flags allow for closely localizing
any fault, thereby easing error recovery. For example,
if there is a single fault and only the second flag above
is triggered, then the Z error on the data can be II11,
I1ZZZ or I1ZZ. The regions covered by the flags overlap
so that no Z fault is missed. This technique is most effec-
tive if qubit initialization and measurement is fast. Less
extreme versions of the technique, in which some gates
share flags, can also be used. In [21] we use variants of
this technique to apply operations fault tolerantly to data
in a block code, with little qubit overhead.

For a large code with many stabilizers, and especially
with rest errors, it can be inefficient to extract the syn-
dromes one at a time. The circuit in Fig. 6(b) extracts
two of the [7,1,3] code’s syndromes at once, using a
shared flag. Figure 6(c) uses a shared flag to extract all
three Z syndromes. A single fault can lead to at most
a weight-one X error and, if the flag is not triggered, a
weight-one Z error. If the flag is triggered, the gates are
arranged so that the different Z errors are distinguishable.
The circuit uses four qubits and 15 CNOT gates, versus
seven qubits and 25 CNOT gates for Steane-style extrac-
tion with the decoding trick [15]; however the syndrome
001 can occur with errors 1, Zy, Z3 or Z5 and so, unlike
in Steane’s scheme, must be verified before applying a
correction.

The design space for fault-tolerant error correction thus
expands considerably with more allowed qubits. A natural
problem is to extend the flag technique to medium-size
codes of higher distance [31].
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