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We introduce a generalized form of gelation theory that incorporates individual heterogeneity, and
show that it can explain the asynchronous, sudden appearance and growth of online extremist groups
supporting ISIS (so-called Islamic State) that emerged globally post-2014. The theory predicts how
heterogeneity impacts their onset times and growth profiles, and suggests that online extremist
groups present a broad distribution of heterogeneity-dependent aggregation mechanisms centered
around homophily. The good agreement between the theory and empirical data, suggests that
existing strategies aimed at defeating online extremism under the assumption that it is driven by a
few ‘bad apples’, are misguided. More generally, this generalized theory should apply to a range of
real-world systems featuring aggregation among heterogeneous objects.

Aggregation theories developed to date – whether for
physical, chemical or biological systems – do not tend to
account for the significant heterogeneity found in real-
world populations of living objects [1–19]. For example,
humans with very different characters have been observed
to ‘gel’ around particular forms of hate speech and ex-
tremism remarkably rapidly – for example, the global rise
in support of ISIS starting in late 2014 [1, 2]. Indeed,
the ‘out of the blue’ nature of recent attacks in Brussels,
Manchester, Paris and London presents security agencies
with the fundamental problem of knowing how to move
as far as possible left-of-boom in order to detect the onset
of support for some extremist entity – even if such indi-
viduals never end up doing anything in the real world.
Even if such aggregates subsequently fragment [20], the
dynamics of how they initially emerge and grow, and the
consequences of this, are of great interest from both prac-
tical and scientific perspectives.

Here we present a generalization of standard aggrega-
tion theory [15–19] in order to account for heterogeneity-
dependent aggregation dynamics, such as the homophily
principle that birds of a feather flock together [21, 22].
We show that it yields good agreement with recent data
on online extremism in a way that standard aggregation
theory cannot, as well as providing analytic results and
insight into the efficacy of individual-based strategies for
defeating online extremism. Though we focus on extrem-
ism as our empirical testing ground, our results should in
principle apply to any system featuring aggregation of
heterogeneous objects.

We incorporate the heterogeneity of objects using a
variable x assigned to each individual (Fig. 1(a)) [23, 24].
For simplicity we refer to x as a ‘character’ [23, 24]; we
take 0 ≤ x ≤ 1; we assign x values by drawing ran-
domly from a distribution q(x) so that each object i has
a unique xi (i = 1, 2, 3, ..., N); and we assume x is static
over time. All these assumptions can be generalized. In-
teractions between objects are described in terms of their
mutual affinity (i.e. homophily): we define the similar-
ity Sij between i and j as Sij = 1 − |xi − xj |, so that
individuals with alike character have a high similarity
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FIG. 1. Our model of heterogeneity-dependent aggre-
gation (a) Heterogeneity is modeled by randomly assigning
a hidden variable x to each agent, from a given distribution
q(x). Link formation between any two individuals depends on
their affinity, and is quantified by the coalescence probability
C(Sij) which is a function of the similarity Sij = 1− |xi− xj |
between any two objects i and j. (b) Flowchart of the aggre-
gation simulation, leading to gel cluster formation (G). Mean-
field equation also shown for the gel growth dynamics.

while individuals with unlike character have a low simi-
larity. The aggregation mechanism is quantified by the
coalescence probability C(Sij) between individuals i and
j (Fig. 1(b)). The limit of random aggregation is ob-
tained by considering all character values to be iden-
tical (i.e. q(x) = δ(x − x0)) representing an entirely
homogenous population, or equivalently by making the
coalescence probability independent of x (i.e. character-
independent): in both cases C(Sij) = 1 and the results
of our generalized model reproduce those of traditional
gelation theory.

Starting from an isolated population ofN objects, clus-
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ters form over time by randomly selecting two individu-
als i and j that merge into a new cluster with a prob-
ability C(Sij) or remain separated with a probability of
1−C(Sij). Figure 1(b) shows a flow-chart. The process is
described analytically at the mean-field level by clusters
coalescing at a rate proportional to the product of their
sizes (i.e. product kernel) and weighted by a factor F
that incorporates the heterogeneity and formation mech-
anism (see SM for explicit calculation). F determines the
likelihood for any pair of elements i and j to merge into
a new cluster at a given timestep t for a given population
distribution q(x). This generates a set of coupled differ-
ential equations for the number of clusters of size s, ns(t),
given by the following for s ≥ 2 and s = 1 respectively:

ṅs(t) = −2F
sns
N2

∞∑
r=1

rnr +
F

N2

s∑
r=1

rnr(s− r)ns−r (1)

ṅs(t) = −2F
ns
N2

∞∑
r=1

rnr . (2)

The first term on the right-hand side of Eqs. 1 and 2
represents the population of clusters of size s that merge
with other clusters, while the second term in Eq. 1 is the
population of smaller clusters that merge to form clusters
of size s. It is known that if this aggregation process is left
long enough, a macroscopically observable gel will form
[17]. The system undergoes a gelation transition at time
tc = N/2F whose value is determined by a singularity in
the second moment of the size distribution (Supplemental
Material (SM) [25]).

Our use of a generalized gel-formation framework to
describe online extremism, is motivated by the follow-
ing: It is known [20] that operationally relevant support
for pro-ISIS online extremism emerged through macro-
scopically observable social media groups that appeared
suddenly online starting at the end of 2014 and grew out
of the ‘solute’ of several billion online users globally, akin
to gel formation [17]. These online groups are each self-
contained with each group having its own members and
name, and these groups collectively played a key role in
terms of building pro-ISIS narratives, recruitment and fi-
nancing [20, 26, 27]. VKontakte is the largest European
social media platform and, like Facebook, has a group
tool that enables people with common interests to aggre-
gate together online. While Facebook shuts down such
activity, they managed to thrive on VKontakte. Our
VKontakte group data collection and datasets are de-
scribed in full in Ref. 20.

We obtain the temporal evolution of the gel cluster
size G(t) by means of the exponential generating function
E(y, t) ≡

∑
s≥1 snse

ys whose partial time derivative takes
the form of the inviscid Burgers equation which can be
solved by the method of characteristics (see Ref. [17]
for the case of homogeneous systems). Above the gel
transition point, the formalism predicts that the gel size
G(t) obeys

G(t) = N
(

1− e−
2Ft
N2 G(t)

)
. (3)
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FIG. 2. Stochastic and analytic mean-field results for
the gel dynamics (a) Table shows analytically derived quan-
tities for our generalized gelation theory based on homophily
(subscript hom), and for the random version corresponding
to traditional gelation theory (i.e. character-independent ag-
gregation, or equivalently a homogenous population with all
x values identical, labelled with subscript ran). Main panel
shows the temporal evolution of clusters for a typical run of
the simulation for the two cases (right and left respectively)
together with the average x of the growing clusters. Vertical
axis is time. Colored disks represent the evolution of gel G
while the gray ones are smaller clusters. In all cases the radii
grow proportional to s1/2. The time limit shown is when G
reaches 70% of N (N = 103 agents). Dashed horizontal lines
show the theoretical gel transition times tc for each case. (b)
Results for the simulation (points) and the mean-field formula
(lines) for the evolution of G in the two cases.

The solution of Eq. 3 can be expressed in terms of the
W -Lambert function as G/N = 1 −W (z exp z)/z where
z = −2Ft/N . It can also be shown that the cluster
size distribution just before the gelation onset, follows an
approximate power-law with exponent τ = 5/2 (see SM):

ns(t→ tc) ≈
N√
2π
e−

s
2 (1−

t
tc

)2s−5/2 (4)

where tc = N/2F contains the F dependence, and hence
in turn depends on the group formation mechanism and
the character distribution. For a uniform character dis-
tribution q(x), the probability density function (PDF)
of the similarity y = Sij is f(y) = 2y and hence the
mean-field aggregation probability for a process favoring

similarity is F =
∫ 1

0
yf(y)dy = 2/3. In the limit of the

random model (i.e. homogenous population), y = 1 and
the character distribution is a Dirac delta which yields
F = 1. Figure 2 compares the onset and growth of a
single gel in our generalized model, to that of the ran-
dom model corresponding to traditional gelation theory
(i.e. character-independent or equivalently an entirely
homogenous population). The colored disks in Fig. 2(a)
represent the evolution of G while the rings are smaller
clusters whose radii are proportional to the square root of
their respective size. Figure 2(b) shows the good agree-
ment between the time-evolution of G for each, averaged
over 500 realizations (dots), and our mean-field analytic
results (solid lines). A fascinating previous study of the
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FIG. 3. Onset dynamics of global pro-ISIS online sup-
port (a) Sample of the online network of groups in support
of Islamic State on the VKontakte (VK) platform for an ex-
ample day: January 10, 2015. Black dots represent groups,
white dots are users which are connected through blue links
(i.e. follows). (b) Evolution of the total number of follows
stot, i.e. links in the bipartite network shown in (a) (black
circles), compared to our analytical model of heterogeneous
objects undergoing a gelation process (blue curve). The tran-
sition point tc is found to be December 30, 2014. A fitting of
Eq. 3 yields a best-fit value of F = 0.3349± 0.022. Moreover
for three consecutive days starting December 28, 2014, and
hence at t → tc, we find that the distribution of group sizes
follows an approximate power-law distribution with exponent
near 5/2 (α = 2.46) exactly as predicted by Eq. 4, with a
high goodness-of-fit p ≈ 0.64.

evolution of an online social network is given in Ref. [28],
where a dynamical percolation transition was reported in
the number of users joining the network and a model was
proposed that combines contagion and media influence.
Our analysis differs from Ref. [28] in terms of the system
studied, and our description of it as one of gelation as
opposed to percolation. In our study, the online groups
that users choose to join are such that users within the
same group are fully connected to each other. Hence,
each online group is a self-contained cluster in which all
members of the cluster can interact strongly with each
other. In Ref. [26], we discuss the contagion process
dynamics that emerge at a far later stage in the online
development of the groups.

Figure 3(a) shows a snapshot of the pro-ISIS network
extracted on January 10th 2015: 59 different social me-
dia groups supporting ISIS were found, with a total of
21,881 followers and 48,605 links (i.e. follows). As a re-
sult of the extreme content shared in these groups, mod-
erators are constantly chasing them and shutting them
down [20, 27, 29–31]. During the period between the end
of 2014 and the beginning of 2015, a sudden and roughly
continuous growth occurred in the number of added links
(i.e. follows) within the whole network, and lasted until
mid-2015 where a decay process set in [26]. During the
first few weeks of this sudden growth in online extrem-
ist support, the number of shutdown events was minimal
and hence aggregation processes dominated the system
dynamics. This means that this initial period is a good
testing ground for our generalized gelation theory.

Figure 3(b) supports our claim that the sudden growth

of online pro-ISIS support can be interpreted as a gener-
alized gelation transition from the global online ‘solution’
of Internet users, and hence can be described by Eqs. 1-
4. First, a reasonably well-defined transition point tc is
observed and a fitting of Eq. 3 yields a best-fit value of
F = 0.3349 ± 0.022, which is consistent with our gen-
eralized model’s assumption of values between 0 and 1.
Second, as t→ tc we find from the data that the empirical
distribution of group sizes follows an approximate power-
law distribution with a high goodness-of-fit (p ≈ 0.64)
and exponent α = 2.46 which is very close to the pre-
dicted value 5/2 from Eq. 4. Since the system was active
for a year prior to tc, during which multiple group (i.e.
cluster) aggregation and fragmentation events could have
taken place, it is understandable that a certain level of
noise is present within the data. We consider this back-
ground noise as the floor from which the gel cluster arises
at t = tc, as shown in Fig. 3(b). We scaled the time unit
in the model to match that of the data using the gel
growth rate during a period of 20 days around the tran-
sition point. The fact that the best-fit F for the entire
system is close to the value 1/3, could reflect a coales-
cence process that favors dissimilar individuals (see SM),
however more detailed data and content analysis would
be required to properly examine this.

We can also apply our generalized gelation theory anal-
ysis to examine the formation of each individual online
group. We focus here on those that are free of any patho-
logical features, i.e. we weed out any groups that tem-
porarily set their public visibility to zero and hence have
an apparent group size that jumps temporarily to zero,
and we weed out groups that were inactive. We also weed
out groups that experience large sudden changes in very
short periods of time, since this is more akin to explosive
percolation. Since the total number of potential follows
varies over time, we restrict the modeling to the first few
active weeks where the assumption of a constant sub-
population of follows (i.e. N) holds approximately. We
then measured the goodness-of-fit of Eq. 3 against each
group’s growth. We found a total of 32 groups that give
an R-squared higher than 80% during the initial growth
period, based on the notion that each group is a gel clus-
ter formed by a subpopulation of follows from a larger
pool comprising the entire network. Our results are pre-
sented in Fig. 4.

The good agreement shown in Fig. 4 despite the wide
range of onset times for when groups first appear, their
differing growth rates and their different growth profiles,
suggests that our generalized gelation theory is captur-
ing meaningful features of the actual online dynamics.
Since our theory is intrinsically a collective many-body
one, this suggests that the dynamics of online extrem-
ism are collectively driven and hence that proposed so-
lutions aimed at identifying ring-leaders who control and
drive the online dynamics, are misguided. This seems
good news in that it turns attention to macroscopically
observable groups rather than the needle-in-a-haystack
problem of identifying a few ‘bad’ particles in a vast so-
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FIG. 4. Our generalized gelation theory vs. empirical
results for onset of online extremist support. Evolu-
tion of the empirically measured group size sgroup (circles) of
individual online pro-ISIS groups, compared to the theoreti-
cal curves from our generalized gelation theory (solid lines).
The resulting values of the mean-field coalescence probability
F for each of the groups, range from 1/3 up to 1, which is
consistent with our theory (see inset and text).

lution of several billion online users. For a given group,
the onset time and growth profile are characterized by
an F value, with these inferred values across all groups
shown in Fig. 4 inset. Since existing models of gela-
tion do not include heterogeneity, they all correspond to
F = 1 and are unable to reproduce the broad spectrum
of onset times, growth rates, growth profiles – and in par-
ticular the broad distribution of F values – shown in Fig.
4. Without heterogeneity-based aggregation the inset in
Fig. 4 would comprise a delta function at F = 1. Instead,
the actual distribution is centered near F = 2/3 in agree-
ment with the idea that the formation of pro-ISIS online
extremist groups would be expected to be centered rea-
sonably near the value for homophily (i.e. F = 2/3) since
homophily is a widely-accepted mechanism for human ag-
gregation. However the distribution’s broad nature sug-
gests that online extremist groups present a spectrum

of heterogeneity-dependent aggregation mechanisms that
are more nuanced versions of homophily. It piles up to-
ward F = 1, which is the value where the population
is homogeneous (or equivalently, the coalescence mecha-
nism is character-independent). Interestingly, the lower
bound occurs near F = 1/3 which is the F -value ob-
tained by an aggregation mechanism (c.f. Fig. 1) that
favors dissimilar individuals (see SM), however there are
very few of these. We note that since some groups turn
themselves invisible for periods of time, our data neces-
sarily contain some gaps for those particular dates.

Among the limitations of our work is the fact that mod-
eling larger time periods remains a challenge, just as it
would in traditional gelation theory, since it involves de-
riving an expression analogous to Eq. 3 for a popula-
tion N that changes over time. We have made a first
approach to this challenge by considering small linear
variations of N in the original equation, i.e. we add a
small linear increment to the size (N(t) = N0 + kt) and
compare the results to the original case (i.e. k = 0). Fig-
ure S3 illustrates that this variation resembles the group
dynamics for a larger time period than the original mod-
eling. Interestingly there are no significant differences
in the estimated value of F , which for the static (i.e.
k = 0) and dynamical (i.e. k 6= 0) versions of the model
is F = 0.97± 0.022 and F = 0.96± 0.043 respectively.

In summary, we have shown that aggregation mecha-
nisms based on individual heterogeneity enrich the dy-
namics of a finite set of interacting objects, and provide
new insight into the urgent societal threat of online ex-
tremism. More broadly, this work invites application to
the wide range of life science and social systems that in-
volve a heterogeneous population.
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