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We measure the full photon-number distribution emitted from a Bose condensate of microcavity
exciton-polaritons confined in a micropillar cavity. The statistics are acquired by means of a photon-
number resolving transition edge sensor. We directly observe that the photon-number distribution
evolves with the non-resonant optical excitation power from geometric to quasi-Poissonian statistics,
which is canonical for a transition from a thermal to a coherent state. Moreover, the photon-number
distribution allows evaluating the higher-order photon correlations, shedding further light on the
coherence formation and phase transition of the polariton condensate. The experimental data is
analyzed in terms of thermal coherent states which allows one to directly extract the thermal and
coherent fraction from the measured distributions. These results pave the way for a full under-
standing of the contribution of interactions in light-matter condensates in the coherence buildup at
threshold.

PACS numbers: 05.70.Ln,05.30.Jp,42.50.Ar,71.36.+c

Quantum condensation, in the case of photonic sys-
tems [1], describes the transition from a chaotic or ther-
mal state of many particles to a coherent state that pro-
vides the order parameter for a macroscopic wavefunc-
tion. This is best described by the full particle-number
distribution, that embeds the correlation at all orders,
while experiments usually focus on the first and sec-
ond order. The textbook case reduces to an exponen-
tial distribution for the particle number in the incoher-
ent phase, as opposed to a Poissonian distribution in the
condensed phase. Every system, however, makes this
transition in a way that is specific to its mechanism of
coherence buildup and to the conditions in which this
happens. In lasers, which have been the first and fore-
most systems to grow coherence, quantum theory de-
scribes this transition with nonlinear master equations
that include positive feedback and pumping. A popular
model, the Scully-Lamb master equation, finds a tran-
sition from a thermal state below threshold, to a bell-
shaped photon distribution above threshold, but with a
much higher spread than a Poisson distribution [2]. The
measurement of the full photon-number distribution was
performed shortly after the realisation of lasers to con-
firm the nature of the light field through an excellent
agreement with the ideal distributions when far enough
from the threshold [3]. In atomic condensates, the need
for a full particle-number distribution is even more com-
pelling, as a strongly-correlated gas has a richer physics
of higher-order correlations [4] that impacts on such crit-
ical dynamics as the rate of many-body collision [5] or

nonlocal interactions and entanglement in sufficiently in-
teracting systems (such as those of reduced dimension-
ality) [6]. The full atom-number distribution of a Bose-
Einstein condensate (BEC) was also measured shortly
after the system was realized in the laboratory [7], in
the atom laser configuration where the condensate is left
to free-fall. The deviations from thermal and Poissonian
distributions on both sides of the transitions have been
found to be more important than for the photonic case,
due to atomic interactions. Full particle-distributions
have also been reported in other quantum systems, such
as superconducting qubits [8], where the system is so-
strongly quantized that its photon-statistics manifests di-
rectly in the signal. Recently, particle-number distribu-
tions have been used to investigate more intricate aspects
of quantum thermodynamics, such as revealing the so-
called prethermalization stage in out-of-equilibrium sys-
tems [9] or in characterizing condensation in a closed or
open system thermalizing with or without fluctuations
of particles in its reservoir [10]. In all these cases, the
particle-number distributions are a precious tool to pro-
vide a comprehensive picture of the quantum state of the
system, well beyond the standard correlation functions.
While photonic systems on the one hand, and material
ones on the other hand have been readily characterized
in this way, such a characterization has been missing for
another platform which also thrives with condensation
phenomena, namely, exciton-polaritons. These particles
are a mixture of light and matter and whether their con-
densation follows more the light paradigm or the atomic
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paradigm has been a topic of intense debates, which are
still largely unresolved to this day [11].

However, an accurate measurement of the photon
probability distribution, in particular in nanoscopic-
lightsources with comparatively low photon-numbers per
emitted pulse, is non-trivial, as it requires in princi-
ple single-photon detection capabilities in combination
with photon-number resolution. The advent of transition
edge sensors (TES), which are highly sensitive calorimet-
ric sensors in the single-photon regime, allows overcom-
ing past difficulties [12]. Their functionality relies on a
temperature change at the superconducting-to-normal-
conducting transition and consequent resistivity change
due to the absorption of a countable number of photons
[13, 14]. Modern transition edge sensors can moreover ex-
hibit a near-unity detection efficiency over a wide range
of wavelengths, which makes them a highly versatile tool
for the characterization of light-sources [15], including
micro- and nano-laser devices operated in the few pho-
ton regime.

Strong coupling conditions leading to the formation
of exciton-polaritons in quantum well-microcavities, have
first been observed by Weisbuch et al. [16]. In the high-
density regime, the system can undergo a transition to
a dynamic Bose-Einstein condensate aided by bosonic fi-
nal state stimulation [17, 18]. As a result of the driven-
dissipative nature of the system, the coherence proper-
ties of such condensates can be investigated by studying
the properties of the (spontaneously) emitted photons in
the spatial and temporal domain. A variety of studies,
relying on Michelson interferometry and double-slit ex-
periments, have focussed on adressing spatial coherence
properties through (g(1)(r)) measurments [19–21]. Tem-
poral coherence has been extensively studied by deter-
mining the second order autocorrelation function g(2)(τ)
with avalanche photodiodes [22–24]. The extension to
three detectors has allowed to access the third-order cor-
relation function g(3)(τ) [25]. Finally, a special streak
camera method has also been employed to resolve up to
the fourth order in a semiconductor microcavity system,
although not in the polariton condensation phase [26, 27].

These partial measurements of the statistical proper-
ties of the emission resulted in contradictory results [28].
From the beginning of this research field of investigating
coherence buildup mechanisms in light-matter conden-
sates, the question regarding the importance of interac-
tions in the phase transition arose. Namely, it was chal-
lenged whether the condensation could result from relax-
ation towards the ground state mainly due to Bose stim-
ulation of the scattering, akin to a polariton laser [29],
or on the opposite following instead the atomic situation
ruled by interactions, and the strong correlations that re-
sult, resuling in more marked deviations of the polariton-
number statistics [30]. Such questions can be answered
by confronting available theories to the experiment.

In this Letter, we investigate a strongly coupled mi-

crocavity in the regime of polariton condensation via a
transition edge sensor. This photon-number resolving
experiment allows us to reconstruct the photon-number
probability distribution Pn, and, consequently to as-
sess high orders of the autocorrelation function via [31]

g(k)(0) =
∑
n

∏k−1
i=0 (n−i)Pn

(
∑
n nPn)

k , where g(k)(0) denotes the au-

tocorrelation function of k-th order at zero time delay,
n is the photon-number and Pn the probability to find
n photons. We demonstrate that such a quantum fluid
of light, which is generated in a cylindrical micropillar
cavity under optical pumping, exhibits a transition that
follows closely the non-interacting scenario that transits
from an ideal thermal distribution to an ideal Poisson
distribution. This happens without the significant de-
partures that are observed when strong interactions play
a chief role in the condensate nucleation. Interestingly,
however, and as should be expected, we still observe
slight deviations that cannot be attributed to experimen-
tal error. These exist even for the ideal gas when in-
cluding particle-number correlations, which is required to
grow coherence [32] (rate equations alone imply thermal
statistics for all states regardless of their occupancy), and
such deviations are more pronounced nearby the thresh-
old, suggesting that the ones we observe in the exper-
iment originate from the underlying coherence buildup
mechanism, thus providing precious data for further the-
oretical and experimental analysis.

Figure 1b) depicts a low-power momentum-resolved
photoluminescence measurement [33] of the micropil-
lar at 0.2Pth, which yields the dispersion of the emis-
sion from the lower polariton branch (k = 0 µm−1 at
1.534 eV). Pth has been set to the onset of the intensity
nonlinearity of the device. Due to the lateral photonic
confinement in the micropillar, the modes are quantized,
and we observe a mode separation of 0.630 meV between
ground state and the first excited optical mode in the pil-
lar cavity. A simple analytical calculation of the photonic
mode splitting in a cylindrical microcavity [34], scaled
with the photonic Hopfield coefficient, would result in a
pillar diameter of ≈ 6.2 µm for the measured mode sep-
aration. At energies of 1.5417 eV and 1.5438 eV, we ob-
serve a dispersion-less emission signal approximately at
the free-exciton resonance, which is a commonly observed
consequence of the photonic confinement generated via
etching through the active medium [35]. Due to the high
Q-factor in our device, we do not observe any emission
signal from the upper polartion branch [36]. We fit the
discretized dispersion of the lower polariton branch with
a standard coupled oscillator theory [28, 37] (Fig. 1b),
which results in a detuning of −4.5 meV between photon
and exciton modes (red dashed lines) in our device, cor-
responding to a fraction of 30 % exciton at k=0 µm−1.
Figure 1c) shows an angle-resolved measurement for ele-
vated pump powers, approximately a factor of two above
the nonlinear threshold of our device. In this regime, the
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emission is dominated by a monochromatic signal, which
is slightly blue-shifted from the polariton ground state
at low densities. In Figs. 1d) and e) we investigate the
emission characteristics with increased excitation power.
The data has been extracted from a Lorentzian fit of
the integrated ground state emission. At threshold, final
state parametric scattering [38] originating in the bosonic
nature of the quasi-particles begins to dictate the relax-
ation dynamics and we observe a macroscopically popu-
lated groundstate. This results in an intensity nonlinear-
ity [see Fig. 1d)], evidenced in the changes of the slope
(s-shaped) around threshold. Furthermore, the emission
energy of the mode blue-shifts with excitation power due
to the excitonic fraction of the micropillar in strong cou-
pling conditions [39]. The logarithmic form above the
polariton phase transition has been previously reported,
e.g. in Ref. [40] and is attributed to exciton-exciton
interaction screening with increased polaritonic density.
The linewidth drops sharply, which is a common sign of
coherence buildup, related to the coherence time increase
of the condensate via the Wiener-Khinchin theorem [41].
After threshold, the linewidth slowly increases due to de-
coherence inducing particle fluctuations and interactions
with the crystal environment again stemming from the
part matter nature of the condensate [23, 42]. These
three characteristic behaviors are commonly used to ev-
idence persisting strong coupling conditions in a micro-
cavity system emerging with increased particle density
across its phase transition [43].

Figure 2 shows the experimental photon-number dis-
tributions together with a theory fit (details are given in
theory section) for different excitation powers (1.58 - 2.22
times Pth). At a moderate pump power, relative to the
onset of the intensity nonlinearity, the emission has an
exponential-like photon-number distribution and resem-
bles a thermal emitter [see panel 2 a)]. The panels a) to
h) of Fig. 2 correspond to increasing excitation power.
It is clearly seen that this system features a transition
between the two emission regimes resulting in a combina-
tion of thermal and coherent emission. Lastly, in panel h)
the system has reached a nearly coherent laser-like state
with a quasi-Poissonian photon-number distribution. We
now turn to a more detailed analysis of this experimental
data.

These photon-number distributions can be more quan-
titatively analyzed in terms of coherent thermal states
[44]. Such states are obtained by the application of a dis-
placement operator D̂ (α) = exp

(
αâ† − α∗â

)
of a com-

plex parameter α to a thermal state characterized by
the density matrix ρ̂th = (1− p)

∑
n
pn |n〉 〈n| written in

a Fock state |n〉 basis and where p = 〈nth〉/ (〈nth〉+ 1)
given 〈nth〉 the mean thermal occupation. The coher-
ent thermal state density matrix is therefore obtained as
ρ̂(α, 〈nth〉) = D̂ (α) ρ̂thD̂

† (α) and its probability distri-
bution is given by Pn = diag[ρ̂(α, 〈nth〉)]. The thermal
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FIG. 1: a) Scanning electron microscopy (SEM) image of the
micropillar device. b) Low power dispersion at a pump power
of 0.2Pth. Red dashed parabolic/straight line signify the pho-
ton (Ec)/exciton (Ex) mode of the system. The dashed black
lines is a coupled oscillator fit to calculate the upper (UP)
and lower (LP) polariton branches. c) System driven above
the nonlinearity into the polariton condensate regime at 2Pth.
d)/e) Characteristics of energy, linewidth and intensity of the
polariton emission relative to input power extracted from a
Lorentzian fit of the integrated groundstate emission. The
red area marks the power range investigated with the TES.

state α = 0 and the coherent state 〈nth〉 = 0 probability
distributions are respectively exponential and Poissonian

in the photon-number n with P th
n = 1

1+〈nth〉

(
〈nth〉

1+〈nth〉

)n
and P co

n = e−|α|
2 |α|2n

n! . The general case reads [45]

Pn =
〈nth〉n

(1 + 〈nth〉)n+1
e
− |α|2

1+〈nth〉Ln

(
− |α|2

〈nth〉+ 〈nth〉2

)
. (1)

with Ln being the Laguerre polynomials of order n, its
mean occupation is 〈n̂〉 = 〈nth〉 + |α|2 with 〈∆n̂2〉 =

|α|2 (2〈nth〉+ 1) + 〈nth〉2 + 〈nth〉. We show in Fig. 2 fits
of our measured distributions to the ones of such coher-
ent thermal states with black lines. We are then able
to extract the corresponding coherence |α|2 and thermal
〈nth〉 fractions (fit parameters) versus the pump power
in Fig. 3a). We observe a continuous drop of the aver-
age thermal fraction due to the condensation mechanism
such that for high excitation powers, 〈nth〉 nearly van-

ishes in favor of |α|2. Figure 3b) plots the ratio of |α|2
and 〈nth〉. A rapid exponential increase is observed in the
phase transition above threshold until a plateau, with a
ratio of 15 is reached. It happens in presence of a small
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FIG. 2: a)-h) Evolution of the photon-number distribution
with increasing excitation power. a) Shows a near-exponential
dependency, signifying thermal emission, while b) to h) ex-
hibit a transition between dominating thermal to mainly co-
herent proportions of a mixed state. h) Depicts a quasi Pois-
sonian distribution; a laser like emission state. All measure-
ments have been fitted with a thermal-coherent transition
state shown by the black lines. a) and h) additionally show
dashed line plots of pure thermal (blue) and pure Poissonian
statistics (green) of the same 〈n̂〉 as the experimental data.

final persisting thermal occupation, reflecting the g(k)(0)
behavior.

Beyond the basic evaluation of the photon-number dis-
tribution, the TES data also allows to directly recon-
struct the photon correlations of the light source. Figure
4a) exhibits the calculated autocorrelations for g(2)(0) to
g(4)(0), extracted from distributions at each pump power.
The higher-order autocorrelations up to the third order
qualitatively confirm previous results, obtained from po-
lariton devices with a significantly lower quality factor
[25, 26] and without any lateral confinement. The pro-
nounced drop of g(2)(0) towards unity with increasing
pump power above the threshold of polariton condensa-
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FIG. 3: a) Evolution of the thermal and coherence average
particle fractions extracted from the fitted thermal-coherent
state distributions presented in Fig. 2. b) Ratio of the coher-
ent and thermal populations across the condensation thresh-
old.
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FIG. 4: a) Higher order photon correlations of a polariton con-
densate, evaluated from the photon-number distributions via
the higher order momenta of the statistics. The inset shows
a zoom in on the g(2)(0) measurement. b) g(k)(0) functions

scaled with (g(k)(0)− 1)/(k!− 1).

tion indicates the buildup of a coherent state. Interest-
ingly, with this measurement technique, we are able to
determine even higher order autocorrelations, theoreti-
cally up to the order of the highest measured photon-
number.

Figure 4b) compares the correlation functions scaled as
gk(0)−1
k!−1 [27]. It transforms the highest-order photon cor-

relations in such a way that a thermal state corresponds
to one and a coherent state to zero for each g(k)(0).
This allows us to relate autocorrelation functions to each
other. While the general decay shape from a thermal to a
coherent state is preserved, the higher order photon cor-
relations show a lower deviation from the coherent state
for all excitation powers. Previously, Ref. [27] reported
the opposite for higher order photon correlations. How-
ever, the results from Ref. [25], using the same scaling,
happen to agree with our measurement. The sample of
Ref. [27] shows a transition from strong to weak cou-
pling at an unknown input power. The g(k)(0) behav-
ior is therefore expected to differ compared to persisting
strong coupling conditions.
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The textbook coherent-thermal states theory stands as
a very good fit for the experimental data in Fig. 2 but
displays slight deviations for the lower excitation powers
in the high photon-numbers. These small discrepancies,
most markedly pronounced at the transition, should pro-
vide deeper insights into the exact coherence formation
mechanisms and merit further future detailed theoreti-
cal study to attribute them to an either more laser-like
or more atom-like phase transition in the careful inves-
tigation of different models like the weakly and strongly
interacting Bose gas. At this stage of our investigation
and the current sample, we find that the condensation fol-
lows closely the paradigm of a laser (see supplementary
section [47] (including Refs. [48–50]) where we addition-
ally confront our experimental data exemplarily with the
Lamb-Scully model of the coherence built-up in a laser).
This is consistent with the fact that our sample exhibits
photon-like condensation. Interesting further studies in-
volve the differing behaviors in other optical accessable
phase transitions, like purely photonic condensates [46],
polariton condensates in equilibrium in ultra-high qual-
ity samples [51] and even Frenkel exciton condensates
for which different interactions are proposed [52]. Sam-
ples with very strong polariton interactions [53, 54] will
also allow fascinating explorations of strong-correlations
through the full particle-number distribution. With the
study and comparison of these systems, this powerful new
photon-number resolving sensor enables to investigate in
a new light the role of the interaction present at differing
strength levels for each mentioned system. It further al-
lows for even more sophisticated measurement schemes to
access the photon statistics in different sample and emis-
sion configurations (e.g. to map the exact contributions
of higher energy states by careful filtering to produce
more complex convoluted multi-mode statistics).

In conclusion, we have determined the photon statis-
tics evolution at the phase transition of a polariton con-
densate in a strongly coupled microcavity via a transi-
tion edge sensor. Above threshold, the photon statistics
changes from a thermal to a coherent distribution. This
behavior can additionally be monitored with high-order
photon correlation functions at zero delay which can be
straightforwardly extracted from the photon statistics.
This new measurement of the full statistical information
for polaritons gives unique insights into the nature of
their phase transition that should stimulate the develop-
ment of competing theories to identify the mechanism at
play in their coherence build-up.
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