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Abstract 
Asymmetric light transport has significantly contributed to fundamental science and 

revolutionized advanced technology in various aspects such as unidirectional photonic devices, 

optical diodes and isolators. While metasurfaces mold wavefronts at will with an ultrathin flat 

optical element, asymmetric transport of light cannot be fundamentally achieved by any linear 

system including linear metasurfaces. We report asymmetric transport of free-space light at 

nonlinear metasurfaces upon transmission and reflection. Moreover, we theoretically derived the 

nonlinear generalized Snell’s laws that were experimentally confirmed by the anomalous 

nonlinear refraction and reflection. The asymmetric transport at optically thin nonlinear 

interfaces is revealed by the concept of reversed propagation path. Such an asymmetric transport 

at metasurfaces opens a new paradigm for free-space ultrathin lightweight optical devices with 

one-way operation including unrivaled optical valves and diodes. 

  



2 

 

Wave propagation, from sound to light, is generally two-way symmetric, i.e., forward and 

backward paths are identical. Nevertheless, the quest for protecting a laser from back reflections 

or improving information capacity in optical communication technology by mitigating a 

multipath interference calls for asymmetric transport (AT). AT is an uneven physical response of 

counter-propagating signals that has contributed to fundamental science and revolutionized 

advanced technology via a variety of significant devices including circulators and isolators 

(diodes) in electronics [1], optics [2-5], acoustics [6], and heat transfer [7]. While photonic 

metasurfaces have facilitated applications of free-space optics with an ultracompact lightweight 

advantage, such architecture can be potentially harnessed to achieve asymmetric free-space 

transport of light. Photonic gradient metasurfaces are two-dimensional ultrathin arrays of 

engineered meta-atoms (nanoscatterers) that mold optical wavefronts at subwavelength scale by 

imparting rapid phase changes along an interface [8-11]. These subwavelength-structured 

interfaces enable a custom-tailored electromagnetic response with unprecedented control over 

the fundamental properties of light, i.e., phase, amplitude, and polarization. Gradient 

metasurfaces aim to revolutionize optical designs by realizing virtually flat, ultrathin, and 

lightweight optics [10,11] that replaces bulky optical elements. Free-space wavefront molding at 

will by gradient metasurfaces encompasses, abnormal light bending [12,13], planar lenses 

[14,15], optical vortex generators [12,13], and photonic multitasking [16], etc. However, 

excluding time dependence and magnetic response, AT of light cannot be fundamentally 

achieved by any linear system [5] including linear metasurfaces. 

Nonlinear processes or nonlinear materials can be employed to achieve AT [5]. Hence, 

the emerging nonlinear metasurfaces [17-19] may leverage AT. By combining nonlinear 

harmonic generation at interfaces and spatially varying effective nonlinear polarizability with 

controllable phase [17,18], nonlinear gradient metasurfaces (NGMs) offer nonlinear wavefront 

shaping [19,20]. The milestones of achieving extraordinary efficiency of nonlinear generation at 

a subwavelength thickness [21-24] and continuous control of the nonlinear phase [18,22] have 

opened a new paradigm of flat nonlinear optics. Previous demonstrations of AT aimed at on-chip 

(waveguide) architectures [1-4] or required propagation through inherently bulky configuration 

of a superlattice coupled to a nonlinear medium [6]. However, the highly desirable asymmetric 

free-space transport of light at optically thin flatland, in both transmission and reflection, has not 

yet been demonstrated. Here, we report the experimental observation of asymmetric free-space 
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transport of light at NGMs upon transmission and reflection. We also derived the generalized 

laws of refraction and reflection for NGMs, which were experimentally verified by angle-

resolved anomalous refraction and reflection of the nonlinear light. Asymmetric free-space 

transport with metasurfaces provides a route to ultrathin lightweight optical platforms with 

unidirectional operation including ultrathin optical valves and diodes. 

We consider a NGM as an optical interface between two media with an inherent rapid 

phase shift, wherein a nonlinear harmonic is generated (Fig. 1). The harmonic generation in 

NGMs requires revisiting the generalized Snell’s laws of refraction and reflection originally 

introduced for linear gradient metasurfaces [13]. We consider an incident plane wave at an angle ߠ௜ at the fundamental harmonic (FH) and two light rays which are infinitesimally close to the 

actual light path (Fig. 1). In its general form known as the principle of stationary phase [25], 

Fermat’s principle states that the variation of the phase accumulated along the actual light path is 

zero with respect to infinitesimal variations of the path. Accordingly, Fermat’s principle 

corresponding to refraction at NGMs is formulated as 

 ቂఠభ௖ ݊௜ሺ߱ଵሻsinߠ௜݀ݔ െ ఠమ௖ ݊௧ሺ߱ଶሻsinߠ௧݀ݔቃ ൅ ሺ߱ଶ െ ߱ଵሻ∆ݐ ൅ ݀߶ ൌ 0 (1) 

Here, ߱ଵ is the fundamental frequency, whereas ߱ଶ ൌ ݊߱ଵ is the frequency of the generated 

nonlinear harmonic of order ݊; ܿ is the speed of light in vacuum, ݊௜ሺ߱ଵሻ and ݊௧ሺ߱ଶሻ are the 

refractive indices of the two media at the fundamental and nonlinear harmonic generation 

frequencies, respectively; ߠ௧ is the angle of refraction, ݀ݔ is the infinitesimal distance between 

the locations in which the two light rays cross the interface, and ݀߶ is the phase difference 

between these two locations associated with the metasurface. While the first term is the optical 

path differences [Fig. 1(a)], the second expression is attributed to the time-harmonic dependence 

of electromagnetic fields. As the two light rays meet the interface at a time delay of ∆ݐ ൌsinߠ௜݀ݔ ሾܿ ݊௜ሺ߱ଵሻ⁄ ሿ⁄ , the nonlinear harmonic is locally generated at different times along the 

NGM, giving rise to a temporal phase delay of ሺ߱ଶ െ ߱ଵሻ∆ݐ [see Fig. 1(a) inset]. Note that in 

stark contrast to linear gradient metasurfaces (i.e., ߱ଶ ൌ ߱ଵ), this term solely emerges in NGMs. 

By considering a constant phase gradient, we obtained the generalized Snell’s law of refraction 

for NGMs 

 ݊௧ሺߣଶሻsinߠ௧ െ ݊௜ሺߣଵሻsinߠ௜ ൌ ఒభଶగ௡ ௗథௗ௫ (2) 
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where ߣଵ ൌ ܿߨ2 ߱ଵ⁄  and ߣଶ ൌ ଵߣ ݊⁄  are the free-space wavelengths associated with the FH and 

the nonlinear harmonic generation, respectively. 

Similarly, the generalized law of reflection corresponding to NGMs is 

 ݊௜ሺߣଶሻsinߠ௥ െ ݊௜ሺߣଵሻsinߠ௜ ൌ ఒభଶగ௡ ௗథௗ௫ (3) 

where ߠ௥ is the angle of reflection [Fig. 1(b)]. By introducing the anomalous refraction and 

reflection of the beams associated with the FH and nonlinear harmonic generation, these 

generalized laws of refraction and reflection govern the molding of optical wavefronts via 

custom-designed structured interfaces that mimic phase gradients. Note that this concept is 

unified, as for the fundamental wave (i.e., ݊ ൌ 1), the derived laws coincide with the generalized 

Snell’s laws referring to linear gradient metasurfaces [13]. Beyond the scope of metasurfaces, 

these nonlinear generalized Snell’s laws play a role of a working tool in nonlinear optics. 

Efficient generation of nonlinear light in bulky nonlinear materials is obtained by fulfilling the 

phase-matching condition [26], which is an arduous task requiring a compensation method for 

the inherent phase mismatch between the interacting waves propagating in the nonlinear media. 

The ultrathin thickness of NGMs imposes a reduced form of surface phase matching [Eq. (1)] 

which is naturally satisfied via the redirection of the generated nonlinear light (i.e., the angle of 

refraction or reflection). 

We demonstrated experimentally the generalized laws of refraction and reflection in 

nonlinear structured interfaces via a plasmonic antenna array of gold nanorods coated with a thin 

nonlinear active layer of poly(9,9-dioctylfluorence) (PFO). The combination of high field 

enhancement from the resonant plasmonic structures and large third-order nonlinearity of the 

PFO gives rise to strong third harmonic generation (THG) in the formed gold-PFO hybrid 

nonlinear metasurface [18,27]. We imprinted rapid phase change in the nonlinear interface via 

the emerging concept of nonlinear geometric phase [18,22]. The spin-rotation coupling of light 

in NGMs induces nonlinear geometric phase of ߶ሺݕ,ݔሻ ൌ ሺ݊ ט 1ሻߠߪሺݕ,ݔሻ for modes 

maintaining (ߪ,ߪ modes) or flipping (ߪ,െߪ modes) the polarization of the incident fundamental 

wave, respectively [18]; here, ߪ ൌ േ1 is the polarization helicity (i.e., spin angular momentum 

of light in ԰ units, where ԰ is the reduced Planck’s constant [28]) of the incident light 

corresponding to right and left circularly polarized light, respectively, and ߠሺݕ,ݔሻ is the space-

variant orientation angle of the anisotropic optical nanoantennas. NGMs based on the geometric 

phase, also referred as nonlinear Pancharatnam-Berry phase optical elements (see Supplemental 
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Material [29], Sec. 7), enable nonlinear wavefront shaping via spatially varying effective 

nonlinear polarizability with continuously controllable phase [18]. We realized a NGM with a 

constant phase gradient by locally rotating the nanorod antennas in such a way that their 

orientation angles vary linearly along the ݔ direction [Fig. 2(a)]. Note that the FH modes 

resemble the response of linear metasurfaces, wherein the degenerated ߪ,ߪ modes exhibit 

ordinary refraction and reflection, whereas ߪ,െߪ modes exhibit linear anomalous refraction and 

reflection [Fig. 2(b)]. In stark contrast to the FH, all THG (݊ ൌ 3) modes undergo nonlinear 

anomalous refraction and reflection, where ߪ,െߪ modes experience stronger phase gradient than ߪ,ߪ modes [Fig. 2(b)]. Moreover, according to selection rules for harmonic generation [18], all 

polarization modes for both FH and THG signals are allowed with the two-fold rotational 

symmetry of the nanorod, enabling versatile linear and nonlinear wavefront shaping with the 

same structure. 

We pumped the metasurface by a femtosecond laser at the wavelength of 1.26 μm (i.e., 

the localized plasmon resonance of the hybrid metasurface; see Supplemental Material [29], Sec. 

2) and imaged the ݇-space of the scattered light while varying the incident angle of the pump 

laser; by controlling the incident polarization, probing the desired polarization of the scattered 

light, and filtering out the wavelength of the pump laser via a bandpass filter, all FH and THG (at 

the wavelength of 420 nm) modes were measured (see Supplemental Material [29], Sec. 4 for the 

experimental setup). The angles of refraction and reflection, extracted from the ݇-space imaging, 

as a function of the angle of incidence [Figs. 2(c) and 2(d), respectively] exhibit good agreement 

with theoretical calculations performed by the generalized laws of refraction and reflection for 

NGMs [Eqs. (2) and (3)]. Note that in transmission measurements, light incident from the 

substrate side is anomalously refracted to air by the metasurface interface [see Fig. 2(c) inset]; in 

reflection measurements, light incident from the substrate side is anomalously reflected to the 

substrate by the metasurface and then ordinarily refracted to air [see Fig. 2(d) inset]. In different 

ranges of angle of incidence, FH and THG modes reveal “negative” refraction and reflection 

[Figs. 2(c) and 2(d)]. The polarization-dependent critical angles for total internal reflection [Fig. 

2(c)] and critical angles of incidence above which the reflected beam becomes evanescent [Fig. 

2(d)] are evident for the FH and THG (see Supplemental Material [29], Sec. 3 for the detailed 

analysis). 
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By offering new functionalities that cannot be achieved with linear metasurfaces, NGMs 

take the molding of optical wavefronts to a new level. We specifically aimed at AT of light in 

ultrathin structured interfaces. Note that asymmetric transport was theoretically proposed in 

time-varying metasurfaces [30,31], i.e., interfaces wherein a temporal gradient is added to the 

conventional spatial gradient, which have not yet been realized. In the context of metasurfaces, 

for a given angle of incidence, we consider the angle of refraction in two consecutive scenarios 

that are linked by reversed propagation (RP); i.e., the angle of incidence in the bottom-to-top 

excitation scheme (light incident onto the metasurface from free space) is equal to the angle of 

refraction in the original top-to-bottom excitation (light incident onto the metasurface from the 

substrate) [see Fig. 3(a)]. The transport is referred as symmetric when the trajectory of light is 

reciprocal, i.e., the angle of refraction in the bottom-to-top excitation ߠ௧మ is equal to the angle of 

incidence in the primary top-to-bottom excitation ߠ௜భ [see Fig. 3(a)]. Otherwise (i.e., ߠ௧మ ്  ,(௜భߠ

the transport is asymmetric. As the test for AT requires built-in polarization filters, the 

handedness of the circularly polarized beam launched from bottom to top is identical to the 

handedness of the circular polarization of the refracted beam in the top-to-bottom excitation; in a 

similar fashion, the polarization of the refracted beam in the top-to-bottom excitation is identical 

to the original polarization launched from top to bottom [see Fig. 3(a)]. This polarization 

requirement originates from the conservation of the helicity under time reversal, while reversing 

the direction of propagation. Similarly, the concept of AT in metasurfaces is introduced in 

reflection [Fig. 3(b)]. 

By measuring the angle-resolved refraction and reflection angles at both top-to-bottom 

[Figs. 2(c) and 2(d), respectively] and bottom-to-top (Supplemental Material [29], Fig. S6) 

excitation schemes and mapping the corresponding polarization modes, we characterized the 

transport of light in metasurfaces. We revealed that NGMs exhibit AT upon refraction and 

reflection for the ߪ,ߪ modes, while the ߪ,െߪ modes exhibit symmetric transport [Figs. 3(c) and 

3(d)]. In stark contrast, linear gradient metasurfaces show symmetric transport regardless of the 

polarization of the modes [Figs. 3(c) and 3(d) insets]. These observations are in good agreement 

with calculations based on the aforementioned generalized laws of refraction and reflection for 

NGMs. All-angle AT of free-space optical beams is a peculiar property of NGMs arising from 

the nonzero phase gradient imparted to the modes of the generated nonlinear harmonic that 

maintain the polarization state. The concept of AT in NGMs applies to any harmonic order; yet, 
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we chose to demonstrate THG to avoid arduous tasks in experiments as the degree of asymmetry 

increases with the generated harmonic order (see Supplemental Material [29], Sec. 6). Note that 

at both top-to-bottom and bottom-to-top excitations the incident wavelength is the fundamental 

wavelength; yet, the observed AT at NGMs is not optical isolation [5] as the nonlinear 

metasurface enables the conversion from the FH to the generated harmonic but not vice versa. 

In summary, asymmetric free-space transport of light at an optically thin flatland is 

reported. Note that nonlinear anomalous refraction [17,18,20] or reflection [22-24] was 

previously observed only at normal incidence, wherein the spatial-temporal nonlinear phase 

delay vanishes; therefore, we probed its contribution to the nonlinear generalized Snell’s laws by 

angle-dependent measurements. Moreover, the nonlinear generalized Snell’s laws were derived 

as a working tool to explore the new functionality of asymmetric transport at NGMs. The 

generalized laws of refraction and reflection at nonlinear interfaces apply to the entire optical 

spectrum for suitable designer interfaces and may introduce new degrees of freedom in nonlinear 

optics for designing perfect phase matching. This study may also inspire the merging of 

metasurface principles and nonreciprocity, where one-way invisibility cloak, ultrathin optical 

diodes and arbitrary nonreciprocal beam steering are envisioned. 
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FIG. 1. Generalized laws of refraction and reflection at nonlinear gradient metasurfaces. (a),(b) 

Schematics used to derive the generalized laws of refraction and reflection for NGMs, 

respectively, wherein the optical path differences and the rapid phase shift (grayscale pattern) 

introduced by the metasurface are depicted. Red and blue rays correspond to rays of light at the 

fundamental wavelength ߣଵ and at the wavelength of the generated nonlinear harmonic ߣଶ, 

respectively. ߶ and ߶ ൅ ݀߶ are the phase shifts at the two locations in which the rays cross the 

interface. The inset in (a) illustrates the temporal phase delay originating from the time 

difference ∆ݐ in the generation of the nonlinear harmonic between the two crossing locations. 

The three factors of optical path differences, spatial-temporal nonlinear phase delay, and 

metasurface-induced phase shift give rise to the nonlinear generalized Snell’s laws of refraction ݊௧ሺߣଶሻsinߠ௧ െ ݊௜ሺߣଵሻsinߠ௜ ൌ ఒభଶగ௡ ௗథௗ௫  and reflection ݊௜ሺߣଶሻsinߠ௥ െ ݊௜ሺߣଵሻsinߠ௜ ൌ ఒభଶగ௡ ௗథௗ௫, where ݊ is the order of the generated nonlinear harmonic. 
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FIG. 2. Anomalous refraction and reflection from nonlinear gradient metasurfaces. (a) Scanning 

electron microscope image of the NGMs. The unit cell of the NGMs (yellow) comprises twelve 

gold nanorod antennas, where their orientation angles ߠሺݕ,ݔሻ rotate linearly to generate a 

constant phase gradient. The width and length of each nanorod are 50 nm and 240 nm, 

respectively, and the thickness is 30 nm. The unit cell repeats with a periodicity Γ of 4.8 μm 

along the ݔ direction and 400 nm along the ݕ direction. The gold metasurface was coated with a 

100-nm-thick PFO layer to form metal-organic hybrid nonlinear metasurfaces. (b) Same 

metasurface structure introduces different phase distributions for the FH and THG (resembling 

linear and NGMs, respectively). Colors filling the nanorods depict the local phase. The FH beam 

experiences a constant phase for the modes maintaining the polarizations (ߪ,ߪ modes), while the 

modes flipping the polarizations (ߪ,െߪ modes) experience a linear phase profile from 0 to 2ߨ. 

The THG beam experiences linear phase profiles from 0 to 2ߨ and from 0 to 4ߨ for ߪ,ߪ and ߪ,െߪ modes, respectively. The phase profiles portrayed by color correspond to right circular 

polarization (RCP) excitation (ߪ ൌ ൅1); for left circular polarization (LCP) excitation (ߪ ൌ െ1), 
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the trends of the phase profiles are similar but with the opposite slope. (c),(d) Angles of 

refraction (ߠ௧) and reflection (ߠ௥ᇲ) versus the angle of incidence (ߠ௜ᇲ), respectively. Modes are 

labelled with the incident-analyzed polarization state. Lines correspond to theoretical 

calculations performed by the generalized laws of refraction and reflection for NGMs [Eqs. (2) 

and (3)], whereas dots refer to measured data. Error bars (not shown) are smaller than the size of 

the data points. All angles were measured in free space as shown in the insets. 
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FIG. 3. Asymmetric transport at nonlinear gradient metasurfaces. (a),(b) Schematics of the 

concept of AT at NGMs for refraction and reflection, respectively. We first consider the angle of 

refraction or reflection for a given angle of incidence ߠ௜భ; then, we excite the metasurface from 

the opposite side, where the angle of incidence is set to the obtained angle of refraction or 

reflection in the original excitation (i.e., RP path). Moreover, the handedness of the circular 

polarization of these two beams is identical owing to RP. The transport of light is asymmetric 

when the angle of refraction ߠ௧మ or reflection ߠ௥మ in the excitation from the opposite side is 

different from ߠ௜భ. (c),(d) THG RP angles of refraction (ߠ௧మ) and reflection (ߠ௥మ) versus the angle 

of incidence in the original excitation (ߠ௜భ), respectively. Lines correspond to calculations based 

on the generalized laws of refraction and reflection at NGMs, whereas dots refer to measured 

data. All angles were measured in free space. The polarization state of the modes refers to the 

original excitation. The insets in (c) and (d) are the corresponding results for the FH (linear 

metasurfaces). 


