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The dynamics of intense electron bunches in free electron lasers and plasma wakefield accelerators
are dominated by complex collective effects such as wakefields, space charge, coherent synchrotron
radiation, and drift unpredictably with time, making it difficult to control and tune beam properties
using model-based approaches. We report on a first of its kind combination of automatic, model-
independent feedback with a neural network for control of the longitudinal phase space of relativistic
electron beams with femtosecond resolution based only on transverse deflecting cavity measurements.

Free electron lasers (FEL) and plasma wakefield accel-
erators (PWFA) are flexible scientific instruments, pro-
viding a wide range of beam energies and bunch lengths
for various high energy physics, biology, chemistry, ma-
terial science, and accelerator physics experiments. For
example, the Linac Coherent Light Source (LCLS) FEL
provides users with photon energies ranging from 0.27
keV to 12 keV based on electron bunches with ener-
gies from 2.5 GeV to 17 GeV. Operating electron bunch
charge can range from 20 pC to 300 pC and the bunch
duration from 3 fs to 500 fs to suit experimental needs
[1–3]. The updated PWFA facility for advanced accelera-
tor experimental tests (FACET-II) is planning to provide
bunch charges ranging from pC to nC of either positron
or electron beams at energies of 1 to 10 GeV [4].

Precise control of bunch lengths, current profiles, and
energy spreads of increasingly shorter electron beams at
femtosecond resolution is extremely important and chal-
lenging [5, 6]. Traditional model-based approaches are
severely limited by uncertain and time varying beam
phase space distributions, misalignments, thermal cy-
cling, time varying parameters, and collective effects such
as space charge forces, wakefields, and coherent syn-
chrotron radiation emitted by extremely short high cur-
rent bunches. For example, reconfiguring the LCLS to
a low charge mode in order to provide 3 fs bunches can
take many hours of manual tuning by experienced opera-
tors and beam line physicists. Such difficulties are limit-
ing both the complexity of beam arrangements that can
be explored at these facilities and wasting limited beam
time. These difficulties will only grow for future facili-
ties running multiple accelerators, such as the LCLS-II
[7] when complex schemes such as multi-color operation
[8], multi-stage amplification [9] or self-seeding are es-
tablished [10, 11], or at FACET-II which is planning on
providing custom tailored current profiles for a suite of
experiments with specific requirements [12].

The goal of this work was to demonstrate a novel
combination of a model-independent feedback control
method with a trained neural network (NN) for fast (min-
utes) and automatic intense electron beam phase space
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FIG. 1. Simple overview of LCLS showing the controlled pa-
rameters (in red) and XTCAV diagnostic location.

control. Automatic tuning of six coupled beam line com-
ponents (linac phase and bunch compressor energy set
points) transformed initial electron bunches of length
∼300 fs to match desired ∼80 fs long current profiles
while also matching desired energy spread profiles. The
addition of the neural network resulted in global rather
than local convergence, making the method more robust
against large long term drifts.

Our feedback approach is based on a recently devel-
oped method analytically studied for a large class of
nonlinear, time-varying dynamic systems [13, 14], which
has been utilized for predicting and tracking longitudi-
nal phase space distributions at the PWFA FACET [15].
Our multivariable approach is a new, bounded extension
of the classical extremum seeking method implemented in
[16] in which only a single parameter was tuned for FEL
laser spectrum optimization. Our method is applicable
to n-dimensional dynamic system of the form

dx

dt
= f(x,p, t), (1)

where x = (x1, . . . , xn) are physical quantities such as
beam properties at specific locations in a particle accel-
erator, p = (p1, . . . , pm) are controlled parameters, t is
time, and f an unknown function governing the system’s
dynamics. In this work we simultaneously tuned six pa-
rameters, p = (p1, . . . , p6), of the LCLS beam line as
shown in Figure 1 in red: 1) The Linac 1 (L1S) phase
set point has influence on both electron bunch energy
and the length change due to bunch compressor BC1. A
Large change of L1S due to a drift has to be corrected
via a lengthy phase scan. 2) The Linac 1 X-band (L1X)
cavity phase set point linearizes the electron bunch, com-
pensating for energy curvature introduced by L1S. 3) The
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FIG. 2. Beam horizontally streaked by transverse deflecting
radio frequency structures and deflected by a vertical dipole
into detector, measuring current profile and energy spread.

bunch compressor 1 (BC1) energy set point determines
the amount of longitudinal compression of the bunch and
provides feedback for the L1 amplitude set point. 4) The
Linac 2 (L2) phase set point controls a group of multiple
klystrons, effects bunch length, and suffers from the same
drifts as L1. 5) Bunch compressor 2 (BC2) energy set
point is a second stage of compression at higher energy.
6) Linac 3 (L3) phase set point is another multi-klystron
system subject to phase and amplitude drifts.

We minimized a measurable, analytically unknown
“cost function,” C(x(p, t), t), by adjusting the param-
eters p without a knowledge of the analytic form of C.
Our C(x(p, t), t) was a weighted sum of the difference be-
tween measured current ρ̂c(z) and energy spread profiles
ρ̂e(E) and desired profiles ρc(z) and ρe(E) at the end of
the FEL, of the form

C(x(p, t), t) =

∫ L

0

|ρ̂c(z)− ρc(z)| dz

+2

∫ ∆E

−∆E

|ρ̂e(E)− ρe(E)| dE, (2)

where L is a length range and E ∈ [−∆E,∆E] is a range
of electron energy. We only had access to noise corrupted
measurements of C of the form

y(t) = C(x(p, t), t) + n(t). (3)

We used the x-band transverse deflecting cavity
(XTCAV) to measure the beam. The XTCAV streaks
the electron bunch, translating longitudinal position to
transverse position. The rotated bunch is then passed
through a vertical dipole causing an energy-dependent
curvature of the electron trajectory. The setup is shown
in Figure 2, providing both longitudinal bunch current
profile and energy distribution [17].

We adjust the parameters pj according to

dpj
dt

=
√

2αωj cos(ωjt+ ky), (4)

where ωj = ωrj and rj 6= ri for i 6= j. The term α > 0
is the dithering amplitude and can be increased to es-
cape local minima. Once the dynamics have settled a
parameter pj will oscillate about a local minimum with

amplitude
√

2α/ωj . The term k > 0 is the feedback gain.

For large ω, the dynamics of (4) are given, on average,
by the simple dynamics

dp

dt
= −kα∇pC, (5)

a gradient descent, with respect to p, of the actual, an-
alytically unknown function C although the feedback is
based only on the noisy measurements y(t) [13, 14]. In-
tuitively, the reason behind this convergence is that by
dithering each parameter at a unique frequency the evo-
lution of the parameters has been made orthogonal in
Hilbert space in the form of the L2[0, t] inner product:

lim
ω1,ω2→∞

∫ t

0

cos(ω1τ) cos(ω2τ)dτ = 0. (6)

The resulting dynamics on-average minimize a time-
varying, unknown function, with many advantages over
standard gradient descent-type search: 1). Continu-
ously, dynamically tune many parameters of unknown,
nonlinear, open-loop unstable systems, simultaneously
without exponential growth in the number of com-
putations required. 2). Robustness to measurement
noise and external disturbances and can track fast time-
varying parameters. 3). Although operating on noisy
and analytically unknown systems, the parameter up-

dates have analytically guaranteed constraints:
∣∣∣dpjdt ∣∣∣ =∣∣√2αωj cos(ωjt+ ky)

∣∣ ≤ √
2αωj , which is safe for in-

hardware implementation.
We began by recording XTCAV distribution measure-

ments for a fixed set of parameters, which would serve as
our desired profiles ρc(z) and ρe(E). We then changed
parameter settings and thereby the beam’s phase space
distributions and started the algorithm in order to au-
tomatically recover the desired profiles. The procedure
of applying (4) iteratively in hardware was via the finite
difference approximation of (4) given by:

pj(n+ 1) = pj(n) + ∆
√

2αωj cos(ωjn∆ + ky(n)) (7)

which is an accurate approximation of the derivative in
(4) for ∆ < 2π

max{ωj} � 1. Limits were defined for all pa-

rameters and they were normalized to within a range of
±1. The parameter updates were carried out on normal-
ized values which were then un-normalized to physical set
points which could be set in the LCLS. The procedure
started with initial parameter settings p(1), after which
the XTCAV image was recorded and projected on the
vertical and horizontal axes. The raw measurements were
smoothed with a ten-point moving average filter and the
current profile ρ̂c(z) and the energy spread profile ρ̂e(E)
were then used to determine the cost, C(1) as given by
(2). Based on C(1), new parameter settings p(2) were
determined according to (7). The process was continued
iteratively, at a rate of 1/4 Hz to allow for all parameter
changes to settle.
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FIG. 3. a: Experiment 1, longitudinal phase space of initial setup shown relative to target phase space (arbitrary color scale).
b: Results of running feedback. c: Final and target phase space distributions. d: Experiment 2, longitudinal phase space of
initial setup shown relative to target phase space. e: Results of running feedback. f: Final and target phase space distributions.

TABLE I. Experiment setup details.

Experiment Beam energy (GeV) Bunch charge (nC) k α ω dt Averaging Cost function

1 4.48 0.17 1.0E-3 9 [2000, 2320, 2640, 2960, 3280, 3600] 8.7E-5 10× 1D projections

2 4.48 0.17 1.0E-3 4 [2000, 2320, 2640, 2960, 3280, 3600] 8.7E-5 10× 1D projections

3 13.42 0.18 1.4E-5 10 1000 6.3E-4 none 2D images

In the first experiment, the phase set point of L1S
was changed by -3 deg, causing a change in both bunch
length and energy spread. Figure 3 shows the desired,
initial, and final longitudinal phase space distributions as
achieved by the feedback. The iterative procedure then
automatically tuned all six parameters to recover the de-
sired distributions. The evolution of all parameters is
shown on the left side of Figure 4 and the evolution of
the cost function is shown in Figure 5. Although the cost
function was minimized, the L1S phase did not return
to its original value, but was compensated by changes in
other parameters. Figure 3 shows the desired, initial, and
final distributions, ρc(z) and ρe(E), based on which the
cost values were calculated. The energy spread distribu-
tion has been matched almost exactly, while the current
profile has recovered the correct bunch width, but is lim-
ited in accuracy in high frequency characteristics because
of the 10-point moving average that was used to clean up

the profiles. Total tuning time was 3 minutes.

In a second experiment, the L1S and L2 phase and BC2
energy set points were modified and the feedback scheme
was again able to re-match the distributions by adjusting
parameters as shown in Figure 3. A large jump in the cost
seen in Figure 5 is due to a drop out of the beam, during
which we kept running and recording blank XTCAV im-
ages, demonstrating the robustness of the scheme to noise
and sudden step changes. The second experiment shows
a better match of current profiles and a worse match in
energy spread distributions. The total tuning time in the
second experiment was ∼6.6 minutes for 100 steps.

The next step of this work was to combine local, model-
independent feedback method with global machine learn-
ing (ML) based approaches. ML-based tools, such as
NNs, can be trained to automatically tune and control
large complex systems such as particle accelerators [18].
However, ML alone may be insufficient for particle accel-
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FIG. 4. Evolution of the parameters being tuned by the feed-
back algorithm. A: first experiment where only L1S phase
was changed to produce the initial beam phase space distri-
bution. B: second experiment where L1S and L2 phases and
BC2 energy set points were changed. Parameter settings of
the target distribution are shown in black/dashed. The pa-
rameters were then changed to new starting values and the
iterative process was started as shown in blue.
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FIG. 5. Cost function of 1st (left) and 2nd (right) experiment.

erator systems because they are time-varying and their
learned characteristics are drifting. The ML tool must
also be able to interpolate between training points, which
is more difficult for complex, many-parameter systems.
For the third experiment, we conducted a preliminary
investigation into this approach. Due to limited beam
time, we restricted ourselves to controlling two parame-
ters: the compression ratios of BC1 and BC2. First, we
performed a 2-D grid parameter scan while recording pa-
rameter values and TCAV images. Using these data, we
trained a NN to map desired phase space distributions to
the parameter settings needed to achieve them. The NN
itself consisted of three feed-forward hidden layers with
tanh activation functions and was trained on 504 sam-
ples using the rmsprop optimization algorithm [19]. We
demonstrated the combined feedback algorithm and NN
approach by making a very large change in parameter
space and returning to a target phase space distribution
that was not contained in the training data set, first with
the feedback algorithm alone and then with the combined
approach. In the former case, the feedback algorithm was

unable to achieve the target phase space after becoming
stuck in a local minimum. The NN-based setup brought
us close to the desired phase space and feedback was then
initialized and zoomed in on the correct minimum, as
shown in Figure 6. Our cost was defined by directly
comparing the machine’s 2D TCAV measurement with
the desired TCAV image:

C(x(p, t), t) =

∫ L

0

∫ ∆E

−∆E

|ρ̂(z, E)− ρ(z, E)| dEdz, (8)

where each TCAV image was cleaned up by setting all
pixel values below 50 to 0, and centered around the center
of mass of the image. Feedback parameters and beam
properties are summarized in Table I.

These preliminary results have demonstrated a new ap-
proach to controlling the longitudinal phase space of high
energy, short, electron bunches. The major strength of
this approach is that it is model independent, robust to
noise, and can tune many coupled parameters simulta-
neously. The next step in this work will be to add more
controlled parameters, and study the problem for several
electron bunch charges and beam energies. The algo-
rithm presented here is general, adjusting a high dimen-
sional parameter space based only on scalar ”cost” value
measurements and therefore can be useful for any large,
complex system. PWFA facilities, such as the planned
FACET-II can benefit from the approach demonstrated
here for creating custom shaped electron bunches.

This research was supported by Los Alamos National
Laboratory’s Laboratory-Directed Research and Devel-
opment (LDRD) (Project # 20180688ER) program and
SLAC National Accelerator Laboratory.

∗ ascheink@lanl.gov
[1] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J.

Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F. J.
Decker, and Y. Ding, Nat. Photonics 4.9, 641 (2010).

[2] Y. Ding, A. Brachmann, F. J. Decker, D. Dowell, P.
Emma, J. Frisch, S. Gilevich, G. Hays, P. Hering, Z.
Huang, and R. Iverson, Phys. Rev. Lett. 102.25, 254801
(2009).

[3] D. Ratner, R. Abela, J. Amann, C. Behrens, D. Bohler,
G. Bouchard, C. Bostedt, M. Boyes, K. Chow, D. Cocco,
and F. J. Decker, Phys. Rev. Lett. 114.5, 054801 (2015).

[4] C. Joshi, E. Adli, W. An, C. E. Clayton, S. Corde, S.
Gessner, M. J. Hogan, M. Litos, W. Lu, K. A. Marsh,
and W. B. Mori, Plasma Physics and Controlled Fusion
60.3, 034001 (2018).

[5] J. Rzepiela, H. Loos, R. Akre, A. Brachmann, F. J.
Decker, Y. Ding, P. Emma, A. Fisher, J. Frisch, A. Gile-
vich, and P. Hering, SLAC-PUB- 16643, 2016.

[6] T. J. Maxwell, C. Behrens, Y. Ding, A. S. Fisher, J.
Frisch, Z. Huang, and H. Loos, Phys. Rev. Lett. 111.18,
184801 (2013).

[7] T. O. Raubenheimer in Proceedings of the International

mailto:ascheink@lanl.gov


5

time (fs)
-400 0 400

cu
rr

en
t (

kA
)

0

0.5

1

1.5

2

time (fs)
-400 0 400

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

count × 104
0 5 10

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

time (fs)
-400 0 400

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

time (fs)
-400 0 400

cu
rr

en
t (

kA
)

0

0.5

1

1.5

2

time (fs)
-400 0 400

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

count × 104
0 5 10

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

time (fs)
-400 0 400

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

time (fs)
-400 0 400

cu
rr

en
t (

kA
)

0

0.5

1

1.5

2

time (fs)
-400 0 400

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

count × 104
0 5 10

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

time (fs)
-400 0 400

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

time (fs)
-400 0 400

cu
rr

en
t (

kA
)

0

0.5

1

1.5

2

time (fs)
-400 0 400

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

count × 104
0 5 10

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

time (fs)
-400 0 400

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04
Setup
Target

Setup
Target

feedback

feedback

Setup
Target

Setup
Target

Setup
Target

Setup
Target

Setup - Target Setup - Target

Setup - Target Setup - Target

Initial Feedback �nal

NN initial Feedback + NN FinalSetup
Target

Setup
Target

NN

step number
0 50 100 150

co
st

× 105

0

2

4

6

8

10

12

14

16

Feedback
Feedback + NN

time (fs)
-400 0 400

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

time (fs)
-400 0 400

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

Feedback �nal

Target Feedback + NN Final

time (fs)
-400 0 400

∆
E 

(G
eV

)

-0.04

-0.02

0

0.02

0.04

a b

c

e

d

FIG. 6. a: Longitudinal phase space of initial accelerator setup and target phase space (arbitrary color scales). b: The
parameters started very far away from their optimal values, feedback alone did not converge within 150 steps, likely stuck in a
local minimum. c: Utilizing the trained NN to give a closer initial guess, the feedback algorithm was able to converge to the
desired phase space within 150 steps. d: Final phase space distributions. e: Cost function evolution for both case.

Particle Accelerator Conference, Richmond, VA, USA,
2015.

[8] A. A. Lutman, T. J. Maxwell, J. P. MacArthur, M. W.
Guetg, N. Berrah, R. N. Coffee, Y. Ding, Z. Huang, A.
Marinelli, S. Moeller, and J. C. Zemella, Nat. Photonics
10.11, 745 (2016).

[9] A. A. Lutman et al., Femtosecond X-rays from Fresh-
slice Multi-stage Free-Electron Lasers, Phys. Rev. Lett.,
accepted.

[10] J. Amman, W. Berg, V. Blank, F. J. Decker, Y. Ding, P.
Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, and Z.
Huang, Nat. Photon. 6, 693, 2012.

[11] D. Ratner et al., Phys. Rev. Lett. 114, 054801, 2015.
[12] V. Yakimenko, N. Lipkowitz, C. Clarke, M. Hogan, G.

Yocky, C. Hast, S. Green, Y. Cai, N. Phinney, and G.
White, in Proceedings of IPAC2016, Busan, Korea, 2016.

[13] A. Scheinker in Proceedings of the 2013 International

Particle Accelerator Conference, Shanghai, China, 2013.
[14] A. Scheinker and D. Scheinker, Int. J. of Robust and

Nonlinear Control 28(2), 568-581 (2018).
[15] A. Scheinker and S. Gessner, Phys. Rev. ST Accel. Beams

18 (10), 102801 (2015).
[16] N. Bruchon, G. Fenu, G. Gaio, M. Lonza, F. A. Pelle-

grino, and L. Saule, Nuc. Inst. Methods A 871, 20-29,
2017.

[17] C. Behrens, F. J. Decker, Y. Ding, V. A. Dolgashev, J.

Frisch, Z. Huang, P. Krejcik, H. Loos, A. Lutman, T. J.
Maxwell, and J. Turner, Nat. Commun 5, 3762 (2013).

[18] A. L. Edelen, S. G. Biedron, B. E. Chase, D. Edstrom, S.
V. Milton, and P. Stabile, IEEE Trans. on Nucl. Science
63.2, 878-897 (2016).

[19] T. Tieleman and G. Hinton. COURSERA: Neural net-
works for machine learning 4.2, 26-31, 2012.


	Demonstration of Model-Independent Control of the Longitudinal Phase Space of Electron Beams in the Linac Coherent Light Source with Femtosecond Resolution
	Abstract
	Acknowledgments
	References


