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Rapid layering of viscous materials in microsystems encompasses a range of hydrodynamic instabilities 

that facilitate mixing and emulsification processes of fluids having large differences in viscosity. We ex-

perimentally study the stability of high-viscosity stratifications made of miscible and immiscible fluid 

pairs in square microchannels and characterize the propagation dynamics of interfacial waves, including 

breaking and viscous ligament entrainment from wave crests at moderate Reynolds numbers. For large 

viscosity contrasts, parallel fluid streams adopt widely different velocities and provide a simple model 

system to probe the role of inflectional instabilities of stratified microflows in relation with classic invis-

cid-stability theory. We reveal novel viscous wave regimes and unravel dispersion relationships in the 

presence and absence of interfacial tension. Detailed examination of wave celerity shows the existence of 

optimal operation conditions for passively disturbing miscible fluid flows and continuously dispersing 

low-and high-viscosity fluids at the small scale. 
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Irregular fluid motion has long been a source of inspiration and inquiry from the dancing of flames in a 

fire to the breaking of waves on shores. In confined systems, the appearance of sinuous flow paths indi-

cates the transition to turbulence and the possibility to enhance mixing at large Reynolds numbers [1]. 

The amplification of disturbances from inflection points in velocity profile is a common hydrodynamic 

destabilization process [2]. As two fluids in relative motion typically involve inflection points, propagat-

ing perturbations at fluid interfaces – or waves – encompass a rich collection of fluid phenomena, includ-

ing Rossby [3] and Kelvin-Helmholtz [4] waves in the atmosphere, and rogue waves [5] in open water. At 

the small scale, capillary waves [6, 7] and Plateau-Rayleigh instabilities [8, 9] have been widely investi-

gated between immiscible fluids. In general, wave phenomena provide useful mechanisms to disperse 

fluids. In microchannels, natural instabilities of viscosity-stratified flows [10] are promising for the de-

velopment of novel microfluidic mixing methods that do not necessitate active forcing to destabilize 

streams [11]. Linear and non-linear stability analyses of viscous stratifications often involve solving the 

Orr-Sommerfeld equation in various wave-number ranges [12-15] and simple predictions of wave charac-

teristics are not readily available. Although a few wavy flow patterns associated with the shear-induced 

instability of viscosity-differing fluids in bounded systems have been experimentally identified, such as 

pearl-mushroom [16] and bamboo waves [17] in core-annular flows, and small-amplitude waves [18] in 

Couette flows, systematic measurements of neutrally stable waves characteristics caused by inflectional 

instabilities and predicted by the classic inviscid-stability theory [19, 20] remain challenging.  

Here, we experimentally characterize the behavior of viscous waves in the basic configuration of two-

layer flow in a square microchannel. We substantiate the dispersion relationship of inertial viscous waves, 

which significantly differs from that of capillary waves. To generate stratifications, we employ silicon and 

glass microchannels with a hydrodynamic focusing section where a fluid L1 of viscosity η1 is injected 

through the central and top channels at a total volume flow rate Q1 and a more viscous fluid L2 of viscosi-

ty η2 is introduced through the bottom channel at Q2 [Fig. 1(a)]. The microchannel is placed on top of an 

inverted microscope equipped with a high-speed camera for image analysis. Both miscible and immisci-

ble fluid pairs are used to characterize the influence of fluid properties on wave dynamics. The more visc-

ous fluid L2 remains fixed in both cases and is made of silicone oil with a viscosity η2 = 485 cP and 

density ρ2 = 0.97 g mL–1. For the miscible fluid pair, L1 consists of a low-molecular weight silicone oil of 

viscosity η1 = 0.49 cP and density ρ1 = 0.76 g mL–1 and the diffusion coefficient between the two oils is D 

= 5.6×10–10 m2 s–1. In the case of the immiscible fluid pair, L1 is made of ethanol with η1 = 1.08 cP and ρ1 

= 0.78 g mL–1 and the interfacial tension is γ = 1.09 mN m–1. 
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FIG. 1 (color online). (a) Schematics of traveling waves and viscous ligaments in a square microchannel. Inset: Ve-

locity profile of primary flow. (b) Evolution of fast stream width ε1 /h with flow rate ratio ϕ for stable miscible strati-

fications. Inset: gray scale measurement from experimental micrographs. Solid line: Eq. (1), dashed line: ε1 /h = 

(1+2/3ϕ–2/3χ–1/2)–1. (c) Characteristic velocities of viscous stratifications: (i) average stream velocity Vm/V1, (ii) inter-

facial velocity Vi/V2, dot-dashed line: Eq. (2).  

 

To characterize unstable regimes, we first analyze stable flow configurations [Fig. 1(a) – inset] and to 

determine reference interface location and characteristic velocities based on control parameters. In partic-

ular, we examine the relationship between the low-viscosity stream width ε1 and quantities such as viscos-

ity ratio χ = η1/η2 and flow rate ratio ϕ = Q1/Q2. As the interface is slightly curved due to fluid self-

lubrication effects [17], the width ε1 is estimated from gray-scale profiles and is found in good agreement 

with a correlation previously developed for three-layer flows [10]. While the interface location ε1 can be 

experimentally determined, a theoretical approach is needed to estimate average and interfacial velocities. 

Assuming a flat interface, we calculate velocity field and flow rate in each stream as a function of χ and ε1  

through Fourier analysis [21, 22]. In the Supplemental Material [23], we rationalize computations and 

graphically establish the expression, 

ε1/h = [1+0.5(ϕχ) –1/2]–1,    (1) 

which provides good experimental agreement with χ ~ 10–3 for ε1 > 0.1h, when interfacial curvature ef-

fects can be neglected [Fig. 1(b)]. The average velocity in each stream is calculated as V1 = Q1/(ε1h) and 

V2 = Q2/(ε2h), with ε2 = h–ε1. Therefore, according to Eq. (1), V1/V2 = 0.5(ϕ/χ)1/2 » 1 for very low χ and 

the low-viscosity stream is much faster than the high-viscosity stream. The average stream velocity Vm = 
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(V1+V2)/2 then scales with V1 and is relatively independent of ε2 [Fig. 1(c)(i)]. By contrast, the interfacial 

velocity Vi corresponds to the inflection point velocity and depends on flow features of both low- and 

high-viscosity fluid streams. We develop an analytical relationship for Vi by approximating computed 

square duct confinement with a parallel plates model [23], which yields 

Vi = 6V2/(3+ε2/h)    (2) 

when χ ≪1 [Fig. 1(c)(ii)]. In the following, we use V1 and Vi as characteristic velocities during the study 

of unstable layers. 

 
FIG. 2. (Color Online) Flow maps for miscible and immiscible fluids with corresponding experimental micrographs, 

flow rates in μl min–1 (a) Miscible fluid pair with (i) diffusive (Q1, Q2) = (20, 1) ( ), (ii) stable (100, 5) ( ), (iii) 

transitional (180, 20) ( ), and (iv) inertial viscous wave (1000, 70) ( ) regimes with ϕmax = 500 and ϕmin = 0.5 (b) 

Immiscible fluid pair including (i) droplet (5, 30) ( ), capillary (ii) smooth (55, 20) ( ) and (iii) broken viscous 

wave (310, 70) ( ), and (iv) inertial viscous wave (705, 50) ( ) regimes with ϕmax = 200 and ϕmin = 0.15. See main 

text for transition curves. 

 

Miscible and immiscible viscosity-stratifications develop into a variety of flow regimes [Fig. 2]. Flow 

maps based on injection flow rates Q1 and Q2 provide a basis for directly comparing the influence of con-

trol parameters on flow patterns in the presence and in the absence of interfacial tension. For the miscible 

fluid case, four generic flow morphologies include (i) a diffusive regime with a vanishing interface for 

low flow rates, (ii) a stable regime with a straight interface for moderate flow rates, (iii) an inertial regime 

with a wavy interface, and (iv) viscous ligament entrainment from wave crests at large flow rates [Fig. 

2(a)]. Transitions between regimes are delineated with specific dimensionless groups, such as the interfa-

cial Péclet number, Pe = Vih/D ≈ 400 between diffusive and stable regimes and the Reynolds number as-

sociated with the fast stream Re1 = ρV1h/η1 ≈ 96 between stable and inertial regimes. The Péclet number 
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is a useful parameter to compare convective and diffusive transport of species in co-flowing streams hav-

ing similar viscosities [24, 25]. Here, as streams have very large difference in velocity, we use Vi to cha-

racterize convection associated with the interfacial region. In the inertial regime, further increase in flow 

rates eventually leads to viscous wave breaking with ligament entrainment from the high-viscosity fluid to 

the low-viscosity stream. In both cases, the spatial period of undulations remains nearly constant λ/h ≈ 1.8 

and corresponds to a wavenumber k = 2π/λ ≈ 14 mm–1 [Fig. 3(a)]. The critical average velocity V1 asso-

ciated with the fast stream follows a simple scaling, which is deduced using Eq. (1) such as V1 ≈ 

0.5Q1(ϕχ)–1/2/h2 = 0.5(Q1Q2)1/2χ –1/2/h2 since (ϕχ) –1/2 ≫ 1 for ϕ < 20. Thus, the critical velocity V1 ~ 

(Q1Q2)1/2 corresponds to the geometrical mean of injection flow rates. Graphical analysis of flow maps in 

the supplemental materials [23] provide further insights for the choice of characteristic velocities asso-

ciated with specific transitions. 

Regimes associated with the immiscible fluid pair include four flow archetypes, including (i) droplet 

formation at low flow rates, (ii) smooth long wave pattern for modest flow rates, (iii) ligament emitting 

waves for moderate flow rates, and (iv) inertial waves for large flow rates [Fig. 2(b)]. The droplet regime 

is specific to immiscible fluid pairs convected at relatively low flow rates in microsystems [9] and here 

corresponds to the situation where the low-viscosity stream becomes encapsulated by L2 to form a seg-

mented flow of small droplets [Fig. 2(b)(i)]. As droplets are lifted from the walls to the center axis of the 

channel due to the high-viscosity continuous phase, drops adopt a velocity near the average velocity JT = 

(Q1+Q2)/h2. Above a critical JT, viscous waves of long wavelengths (λ » h) are found to travel along the 

immiscible interface as predicted by linear stability analysis for any small Reynolds number [12]. To cha-

racterize this transition, JT is normalized with the capillary velocity γ/η2 of the encapsulating phase to 

form a critical capillary number CaT = η2JT/γ ≈ 5. For separated flows, the onset of breaking waves with 

ligament emission occurs near a capillary number based on the fast stream, Ca1 = η1V1/γ ≈ 0.1 [Fig. 2(b)]. 

The appearance of entrainment at wave crests suggests the prevalence of deforming shear stress exerted 

by the low-viscosity stream over restoring interfacial tension stress. The wavelength of immiscible strati-

fied flows is found to decrease with flow rates and the value of λ/h ≈ 1.8 is reached above a critical Re1 ≈ 

81 indicating transition to inertial regimes similar to the miscible fluid case. Each wave crest then emits a 

thin ligament that is significantly stretched in the fast low-viscosity stream and transported outside of the 

wave structure. Further downstream, the progressive depletion of the viscous stream width ε2 indicates 

significant transport of high-viscosity fluid through ligaments. 

Important physical aspects of travelling waves include frequency f, wavelength λ, celerity c, and am-

plitude A. The space-time coherence of undulations is typically captured using a dispersion relationship, 

which associates angular frequency σ = 2πf and wavenumber k = 2π/λ. Here, data for long wave regimes 
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are found in good agreement with capillary wave theory [26] according to k = [(ρ1+ρ2)/γ]–1/3σ2/3 for im-

miscible fluids [Fig. 3(a)]. For larger wavenumbers k = 14 mm–1, the inertial regime is characterized with 

a wavelength λ that remains independent of frequency f for both miscible and immiscible fluid pairs [Fig. 

3(a)]. Incidentally, in confined microsystems the inertial regime displays smaller λ compared to capillary 

waves that are usually considered the lower limit of interfacial waves in open waters [27].  

 
FIG. 3. (Color online). Wave dynamics. (a) Dispersion relationship between wavenumber k = 2π/λ and angular fre-

quency σ = 2πf for capillary and inertial regimes, dashed line: k = [(ρ1+ρ2)/γ]–1/3σ2/3; solid line: k = 14 mm–1. (b) 

Measured wave emission frequency f as a function of interfacial shear rate Vi/h for all waves. Solid line: f = 1.25Vi/h. 

Inset: example of spatiotemporal diagram used to measure f. (c) Normalized wave celerity as a function of Restrata for 

miscible and immiscible fluid pairs with corresponding micrographs. The color scale represents the wave height A/h. 

Dashed line: c/Vi = 3Restrata
1/3.  

 

The wavelength λ provides a useful indicator of flow regimes and is related to frequency and celerity 

according to the basic wave equation c = fλ. Remarkably, we find direct proportionality between frequen-

cy f and interfacial velocity Vi for over two decades and for all stratified wave regimes with both miscible 

and immiscible fluid pairs according to f = 1.25Vi/h [Fig. 3(b)]. The quantity Vi/h is useful as it can be 

calculated from control parameters and is interpreted as the characteristic interfacial shear rate. As Vi cor-

responds to the velocity of the inflection point, this simple result is in excellent agreement with the invis-

cid–stability theorem [19, 28] and our experimental findings suggest a possible extension of the domain 

of validity to confined shear flow instabilities of viscous materials.  

By contrast to the wave frequency f, the wave celerity c displays a non-monotonic behavior with Vi 

for miscible flows and the ratio c/Vi decreases in proportion to λ for immiscible flows since according to c 
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= fλ with f ~ Vi, one would expect c/Vi ~ O(101) for long waves and c/Vi ~ O(100) for inertial waves. To 

better understand variations of celerity c in inertial regimes and the influence of wave amplitude A, we 

examine the relationship between c/Vi and a stratification Reynolds number Restrata = ρ1V1
2ε1/(η2V2) based 

on the ratio of the inertial force associated with the fast stream (ρ1V1
2)(ε1h) and the shear force in the slow 

stream (η2V2/ε2)(ε2h) [Fig. 3(c)]. While Re1 is useful for predicting transition to inertial regimes, the stra-

tification Reynolds number Restrata is helpful for comparing wave dynamics within inertial regimes and is 

similar to a theoretical argument on the growth rate of interfacial waves in Couette flow configuration 

[29]. Here, as the celerity c is independently measured from high-speed imaging and normalized with a 

velocity Vi, which is numerically calculated from control parameters Q1 and Q2, data reveal the fine influ-

ence of the wave amplitude A on flow behavior in the inertial regime. The wave height A is measured be-

tween crests and troughs and coded using a color scale to show correlations with c in Fig. 3(c). For the 

miscible fluid pair, small wave amplitudes, A < 0.2h, are observed for Restrata < 1 and c/Vi ≈ 2.7. Both 

maximal amplitude A ≈ 0.4h and celerity c ≈ 4.5Vi are reached for Restrata = 5, following a scaling c/Vi ≈ 

3Restrata
1/3 since a greater inertial force is exerted on wave crests for larger A and waves adopt higher c/Vi. 

A further increase of Restrata leads to a decrease of both A/h and c/Vi due to the apparent flattening effect of 

the strong inertial force associated with the low-viscosity stream. The presence of a maximum c/Vi sug-

gests an optimum Restrata for mixing applications where viscous stratified flows made of miscible fluids 

can be most effectively disturbed over short distances. By contrast, the relative celerity of interfacial 

waves between immiscible fluids experiences a monotonic decline with Restrata and reaches a plateau c ≈ 

1.8Vi in the inertial regime with no significant correlations between A and c. Beside these fine variations, 

the scaling c ~ Vi is in good the agreement with classic inviscid-stability theorem [19]. 

We now turn our attention to the dynamics of viscous ligaments entrained from interfacial ridges in 

various flow regimes. Slender structures protrude from viscous waves as a result of a large discrepancy 

between the wave celerity c ~ Vi and the low-viscosity fluid stream velocity V1 ≫ Vi. During propagation, 

viscous wave crests experience a straining force due to the fast side stream, which triggers breaking and 

ligament withdrawal. Entrainment of threads and tendrils involves complex mechanisms that have been 

studied in several different contexts [30-35]. In this work, we examine three typical entrainment dynamics 

of microfluidic waves including (i) capillary ligament yarning and inertial entrainment of (ii) miscible and 

(iii) immiscible fluid threads as presented in Fig. 4. In the inertial regimes, the front velocity of ligaments 

normalized by the wave celerity u/c widely grows in the reference frame of the wave crest for both misci-

ble and immiscible stratifications. In particular, ligaments are found to gain significant speed when they 

reach the next downstream crest as they are sworn into the bulk of the fast stream outside of the wave 

structure. By contrast, for mid-range waves in the viscous capillary regime, the relative velocity of liga-
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ments remains on the order of unity in the experimental field of view and ligaments display intriguing 

trundling behaviors that consist of a rolling mode due to the clockwise torque generated by local velocity 

profile in a wave trough. The small relative speed of ligament allows accumulation of viscous fluid at the 

tip, which rotates and form a structure suggesting a ball of yarn. Such phenomenon is unique to capillary 

viscous waves since tip rotation requires a long and flat trough, i.e., a large λ. For inertial viscous waves, 

when u/c ~ O(10), multiple ligament entrainments are observed for both immiscible and miscible fluid 

pairs. As immiscible ligaments form well-defined rounded tips, they experience a larger drag compared to 

their slender miscible counterparts and, as a result, display larger velocities for similar flow rates. Com-

plex flow structures including recirculating vortex are also observed with miscible fluids [Fig. 4].  

 
FIG. 4. (Color online) Dynamics of ligament entrainment with evolution of front velocities in the reference frame of 

wave crests, flow rates in μL min–1: (i) immiscible ligament yarning with u/c ~ O(100) for (Q1, Q2) = (20, 305) and 

inertial regimes with u/c ~ O(101) for (ii) miscible fluid (20, 800) and (iii) immiscible fluid pairs (15, 600). Selected 

images correspond to solid data points on the velocity graph. 

 

In this letter, we report a set of complex yet periodic flow regimes arising from simple miscible and 

immiscible viscous stratifications in confined microsystems, including a long wave capillary regime and a 

short wave inertial regime. We find good agreement with theory for the dispersion relationship of capil-

lary waves and we delineate the dispersion relationship of waves in the inertial regime for both miscible 

and immiscible fluid pairs. In the inertial regime, the wavenumber remains constant regardless of fre-

quency or interfacial tension, which allows us to clearly distinguish flow transitions. In addition, evidence 

of direct proportionality between experimental wave frequency and computed interfacial shear rate of 

primary flow confirms the role of inflectional regions during pressurized shear-flow instabilities for all 

stratified regimes. The interfacial velocity provides an intrinsic reference to examine the evolution of 
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wave celerity as a function of the stratification Reynolds number. For the case of miscible stratifications, 

we show that the maximal relative celerity is reached for large wave amplitude suggesting the existence 

of optimal micromixing conditions through ligament entrainment. Overall, we shed light on numerous 

novel destabilizing processes and characterize flow transitions using dimensionless groups based upon 

confined high-viscosity fluid strata. Viscous ligaments emitted from wave crests can be employed to con-

tinuous blend small amount of high-viscosity fluids with miscible solvents or disperse fine droplets into a 

low-viscosity continuous phase. Our study provides important practical elements to better manipulate a 

range of environmental, biological and engineered multifluid flows with vast viscosity contrasts at the 

small-scale. While capillary waves are usually seen as the smallest interfacial waves, our work shows the 

transition to smaller inertial waves in confined microsystems. Further fundamental work on the relation-

ship between maximal wavenumber and confinement would improve our current understanding of intri-

guing viscous wave dynamics in confined microsystems. 

 

This material is based upon work supported by the National Science Foundation under Grant No. CBET-

1150389. 
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