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Insights from quantum information theory show that correlation measures based on quantum
entropy are fundamental tools that reveal the entanglement structure of multipartite states. In that
spirit, [Groisman et al., PRA 72, 032317 (2005)] showed that the quantum mutual information I(A; B)
quantifies the minimal rate of noise needed to erase the correlations in a bipartite state AB. Here,
we investigate correlations in tripartite systems ABE. In particular, we are interested in the minimal
rate of noise needed to apply to the systems AE in order to erase the correlations between A and
B given the information in system E, in such a way that there is only negligible disturbance on
the marginal BE. We present two such models of conditional decoupling, called deconstruction
and conditional erasure cost of tripartite states ABE. Our main result is that both are equal to the
conditional quantum mutual information I(A; B|E) – establishing it as an operational measure for
tripartite quantum correlations.

Introduction. Landauer’s principle states that the
amount of work needed for erasing a memory is pro-
portional to the amount of information stored in the
memory [1]. Motivated by this principle, the correla-
tions of a bipartite quantum state ρAB shared between
two parties Alice and Bob can be quantified by the
amount of noise that is required to erase the correla-
tions in ρAB. This erasure cost is closely connected
to the thermodynamical cost of erasing the correla-
tions [2], which in turn is part of the larger context of
the physics of erasure (see, e.g., [3–6]). In a model of
Groisman et al. [2] [7], Alice is allowed to pick a free
ancilla, in the form of an already decoupled state θA′ ,
and then applies a unitary randomizing channel

ΛAA′(·) :=
1
M

M

∑
i=1

Ui
AA′
(
·
)(

Ui
AA′
)† , (1)

where the noise injected into the system comes from
averaging over the unitaries. The goal is for the result-
ing state to become close to a product state (or, in other
words, decoupled)

F (ΛAA′(ρAB ⊗ θA′), πA′A ⊗ ρB) ≥ 1− ε , (2)

where πAA′ is a maximally mixed state on a subspace of
AA′. Here, the action of the channel ΛAA′ on systems
AA′B is understood as ΛAA′ ⊗ IB, where IB denotes
the identity channel, and the fidelity between states ξ
and χ is given by F(ξ, χ) := Tr

[√√
χξ
√

χ
]
. We note

that the use of the ancilla is catalytic in the sense that
the system A′ has to stay decoupled from B (at least ap-
proximately), but potentially makes the erasure process

more efficient [8]. The main result of Groisman et al. [2,
Thm. 1] is that the minimal rate of unitaries needed in
the limit of many copies ρ⊗n

AB and vanishing error ε→ 0
is given by the quantum mutual information (QMI)

1
n

log M→ I(A; B)ρ := H(A)ρ + H(B)ρ − H(AB)ρ ,

with the quantum entropy of a state ηX on system X
given by H(X)η := −Tr

[
ηX log ηX

]
. Thus, we can con-

clude that the QMI is equal to the amount of noise
needed for correlation destruction between systems A
and B. This result gives information-theoretic justifica-
tion for the diverse use of the QMI as a correlation mea-
sure in quantum physics. For instance, it is a stepping
stone in a quantitative understanding of decoupling, a
central concept both in quantum information theory
and in physics in general, with implications ranging
from the black-hole information paradox [9–11] to area
laws in quantum many-body systems [12].

Conditional measures of correlations. Here, we aim to
quantify the correlations in a tripartite quantum state
ρABE. A measure that is (informally) understood as
quantifying the correlations between A and B from the
perspective of system E is the conditional quantum mu-
tual information (CQMI)

I(A; B|E)ρ := I(AE; B)ρ − I(E; B)ρ . (3)

The CQMI is always non-negative I(A; B|E)ρ ≥ 0, an
entropy inequality known as strong sub-additivity [13].
The mentioned informal interpretation of the CQMI can
be made precise, as it characterizes the resource re-
quirements of the task of quantum state redistribution
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FIG. 1: Depiction of (a) a state deconstruction protocol
ΛAA′E with ancilla θA′ for ρABE along with (b) the

conditions of local recoverability F(AA′; B|E)ω ≥ 1− ε
and negligible disturbance F (ωBE, ρBE) ≥ 1− ε.

[14] and plays an important role in hypothesis testing
of conditional correlations [15–17]. The conditional mu-
tual information is also an essential quantity in vari-
ous areas of physics such as condensed matter physics
[18, 19], high energy physics [20, 21], thermodynam-
ics [22], and complex and neuronal systems [23]. The
CQMI is closely related to another conditional measure
of correlations [24], the fidelity of recovery (FoR) [25]

F(A; B|E)ρ := sup
RE→AE

F
(
ρABE,RE→AE(ρBE)

)
,

where the supremum is with respect to all recovery
channels RE→AE. The connection of the FoR to the
CQMI was only understood very recently in a series of
works refining our understanding of multipartite quan-
tum correlations, which began with [26, Thm. 5.1]

I(A; B|E)ρ ≥ − log F(A; B|E)ρ . (4)

This shows that the CQMI is a witness to quantum
Markovianity: if it is small, then we can understand
the correlations between A and B as being mediated
by system E via the local recovery channel RE→AE. In
analogy to the QMI and as a refinement thereof, the
CQMI is the basis of various correlation measures in
quantum physics. For example, it is a key concept in
condensed matter physics, as the CQMI of three re-
gions with a non-trivial topology gives the topologi-
cal entanglement entropy of the system [27, 28]. Also
in high-energy physics, it has emerged as a important
tool to understand the irreversibility of renormalization
flow [29].

Deconstruction of quantum correlations. We note from
Eq. (3) that it is easy to see that Groisman et al.’s re-
sult can be invoked to say that I(A; B|E)ρ quantifies the
additional cost to erase correlations between A and BE

rather than just between A and E. What has been miss-
ing so far, however, is a direct operational interpreta-
tion of the CQMI as a correlation measure in terms of
quantum Markovianity. We now present exactly such
an interpretation by extending the model of Groisman
et al. to incorporate a conditioning system E. We start
with a tripartite quantum state ρABE and suppose that
Alice holds AE and Bob B. The task we want to accom-
plish is more delicate than just the total destruction of
correlations between Alice and Bob. Namely, we are in-
terested in the minimum rate of noise that Alice needs
to apply to her systems such that

(i) the resulting system A is locally recoverable from
the E system alone, and

(ii) the correlations between E and B are only negligi-
bly disturbed.

We call the task a state deconstruction protocol, whose
aim is to deconstruct (literally, to break into constituent
components) the correlations in ρABE. More precisely,
a deconstruction protocol for ρABE is given by an al-
ready deconstructed, decoupled ancilla state θA′ , and a
unitary randomizing channel

ΛAA′E(·) :=
1
M

M

∑
i=1

Ui
AA′E

(
·
)(

Ui
AA′E

)† , (5)

such that for the resulting state

ωAA′BE := ΛAA′E(ρABE ⊗ θA′) , (6)

the above conditions (i) & (ii) are fulfilled

F(AA′; B|E)ω ≥ 1− ε & F (ωBE, ρBE) ≥ 1− ε . (7)

The use of the ancilla system A′ is again catalytic in
the sense that it is part of the output register and thus
has to stay deconstructed with respect to BE (at least
approximately). We call the minimal rate of unitaries
needed in the limit of many copies ρ⊗n

ABE and vanishing
error ε → 0 the deconstruction cost of ρABE, denoted by
D(A; B|E)ρ.

Conditional erasure of quantum correlations. Alterna-
tively, we can replace the local recoverability condition
in (7) with the stronger condition

F(ωAA′BE, πAA′ ⊗ωBE) ≥ 1− ε , (8)

where πAA′ denotes a maximally mixed state on a sub-
space of AA′. By choosing the local recovery channel as
RE→AA′E(·) = (·)⊗ ωAA′ we see that this new condi-
tion (8) surely implies the local recoverability condition
in (7). The conditional erasure cost of ρABE, denoted by
C(A; B|E)ρ, is then defined as the corresponding mini-
mal rate of unitaries needed in the limit of many copies
ρ⊗n

ABE and vanishing error ε → 0. Thus, we have by
definition C(A; B|E)ρ ≥ D(A; B|E)ρ.
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Conditional decoupling. Our models for deconstruc-
tion and conditional erasure extend the decoupling ap-
proach to quantum information theory [30–33] to a con-
ditional version. While first conceived in the context
of quantum source coding [30], the decoupling tech-
nique has numerous applications in areas as different as
cryptography [34], quantum thermodynamics [35, 36],
black hole radiation [9–11], or many body quantum
physics [12]. Our models for deconstruction and con-
ditional erasure extend this paradigm in the following
sense. In conditional erasure, Alice does not want to
erase all her correlations with Bob’s system B but only
decouple her system A from B conditioned on the in-
formation she holds in system E, thereby not disturbing
the correlations between E and B. This negligible dis-
turbance condition is critical: Alice and Bob might want
to use their systems E and B, respectively, for some later
quantum information processing task, so that keeping
the correlations intact is essential for the systems to be
useful later on. The condition also highlights an essen-
tial difference between a semi-classical and fully quan-
tum state deconstruction protocol: in the case that the
system E is classical, the negligible disturbance condi-
tion is not necessary because one could always observe
the value without causing any disturbance to it. How-
ever, in the quantum case, the uncertainty principle for-
bids us from taking a similar action, so that it is neces-
sary for a fully quantum state deconstruction protocol
to proceed with a greater sleight of hand.

Main result. It is the goal of this letter to show that
both the deconstruction cost as well as the conditional
erasure cost are given by the CQMI.

Theorem 1. For any tripartite quantum state ρABE:

D(A; B|E)ρ = I(A; B|E)ρ = C(A; B|E)ρ .

Thus, our result assigns a new physical meaning to
the CQMI, in terms of an erasure or thermodynami-
cal task that generalizes Landauer’s original scenario as
well as the erasure of correlations scenario of Groisman
et al. The CQMI has many properties that are useful for
a conditional measure of correlations. Amongst them
are the duality property I(A; B|R)ρ = I(A; B|E)ρ for a
four party pure state ρABER and the chain rule

I(A1 · · · An; B|E)ρ =
n

∑
i=1

I(Ai; B|EAi−1
1 )ρ (9)

for Ai−1
1 := A1 · · · Ai−1. The latter means that we can

think of the correlations between A1 · · · An and B, as
observed by E, being built up one system at a time.

We would like to emphasize again that deconstruc-
tion and conditional erasure protocols are more del-
icate than standard decoupling, the latter sometimes

described as having the relatively indiscriminate goal
of destruction [37]. That is, a straightforward applica-
tion of the decoupling method is too blunt of a tool to
apply in a state deconstruction protocol. Applying it
naively would result in the annihilation of correlations
such that if correlations between systems B and E were
present beforehand, they would be destroyed.

Previous Work. Our results are to be contrasted with
the previous works of del Rio et al. [35] and Wakakuwa
et al. [38]. In [35] the authors give a conditional ver-
sion of Landauer’s erasure principle by showing that
the work cost of resetting the A-part of a tripartite pure
state ρABR to ψA ⊗ ρBR with ψA pure, is given by the
conditional entropy H(A|B)ρ. There are various differ-
ences with our setting, but most importantly, we do not
demand for the final state to be pure on A, but only
that it is deconstructed as in (7) or decoupled and max-
imally mixed as in (8). In [38] the authors give an ex-
tension of the Groisman et al. model (1)–(2) to include
a third system E. Their model, called Markovianization
cost, is conceptually different from our models (5)–(8)
in various aspects: (i) their unitaries only act on A and
not on AE (and hence there is no negligible disturbance
condition on BE) (ii) the resulting state is asked to be
close to an exact quantum Markov state [39] (however,
see also [40]) (iii) there is no catalytic ancilla register.
Whereas the converse from Proposition 2 holds for their
model as well [40], the CQMI cannot be achieved: the
different condition (i) accounts for a strictly larger op-
timal rate function based on the Koashi-Imoto decom-
position [41] (at least for pure states). This proves that
the CQMI cannot be achieved without having access to
the E system (which is actually even true in the clas-
sical case [42]). Wakakuwa et al.’s result is motivated
from questions in distributed computation [43] but has
the disadvantage that the Koashi-Imoto decomposition
is not continuous in the state. We consider our mod-
els to be the most natural and refer to our companion
paper [42] for an extended discussion.

Converse. We only need to prove that the decon-
struction cost of tripartite states is lower bounded by its
CQMI since we have C(A; B|E)ρ ≥ D(A; B|E)ρ. For that
we make use of standard entropy inequalities and some
properties of the FoR that are similar to the CQMI. In
particular, the FoR is self-dual [25, Prop. 4],

F(A; B|E)ρ = F(A; B|R)ρ for ρABER pure, (10)

and multiplicative on tensor-product states [44,
Prop. 2].

Proposition 2. For any tripartite quantum state ρABE:

D(A; B|E)ρ ≥ I(A; B|E)ρ .
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Proof. Given an ancilla state θA′ and a set of unitaries{
Ui

AA′E
}M

i=1 leading to ωAA′BE as in (6), we define an
extended ancilla state θA′A′1 A′2

:= θA′ ⊗ τA′1 A′2
with each

τA′i
maximally mixed of dimension

√
M [45], and apply

the unitaries Ui
AA′E controlled on an orthonormal basis

of maximally entangled states of A′1 A′2. When tracing
out over A′2, the resulting state is given by ωAA′BE⊗ τA′1
with ωAA′BE from (6). Now, by the multiplicativity of
the FoR we have F(AA′A′1; B|E)ω⊗τ = F(AA′; B|E)ω,
and hence we find that any lower bound on the size
of the system A′2 that has to be traced out in order to
fulfill the conditions (7) for ωAA′BE, automatically gives
a lower bound on the number M of unitaries needed.
To find a lower bound on |A′2| =

√
M, we start with

nI(A; B|E)ρ = I(An A′A′1 A′2En; Bn)ρ⊗n⊗θ − I(Bn; En)ρ⊗n

which follows because the CQMI is additive with re-
spect to tensor-product states, invariant with respect to
tensoring in a product state, and because of the CQMI
chain rule (9). Now, we employ that the QMI is invari-
ant with respect to local unitaries and that the QMI is
continuous in the sense that

−I(Bn; En)ρ⊗n . −I(Bn; En)ω ,

with . denoting an inequality that holds up to terms
having order n

√
ε. From a dimension upper bound on

the QMI (see, e.g., [46]), we then get

nI(A; B|E)ρ . I(An A′A′1En; Bn)ω⊗τ + 2 log
∣∣A′2∣∣ .

Again using the additivity of the CQMI with respect
to tensor-product states and the CQMI chain rule (9),
we find that I(An A′A′1En; Bn)ω⊗τ = I(An A′; Bn|En)ω.
The claim follows by the converse of (4), using,
e.g., [47, Prop. 35], F(An A′; Bn|En)ω → 1 implies
I(An A′; Bn|En)ω → 0) and by taking the limits n → ∞
and ε→ 0.

Achievability. We only need to prove that the condi-
tional erasure cost of tripartite states is upper bounded
by its CQMI since we have D(A; B|E)ρ ≤ C(A; B|E)ρ.

Proposition 3. For any tripartite quantum state ρABE:

C(A; B|E)ρ ≤ I(A; B|E)ρ .

We will make crucial use of a previously established
operational interpretation of the CQMI in terms of
quantum state redistribution (QSR) [14]. A QSR proto-
col begins with a sender, a receiver, and a reference
party sharing many independent copies of a four party
pure state ρABER. The sender has AE, the receiver R,

and the reference party B. The goal is to use noise-
less quantum communication and entanglement assis-
tance to redistribute the systems such that the sender
ends up with E, the receiver with AR, and the refer-
ence keeps B. We will need the following key lemma
from the follow-up work [48], which shows that QSR is
asymptotically achievable for a quantum communica-
tion rate of 1

2 I(A; B|E)ρ, using entanglement assistance
and a unitary encoder and decoder.

Lemma 4. [48, Thm. 3] For every four party pure state
ρABER there exist unitary operations Enc : An A′En →
A0 Ā0En and Dec : Ā0RnR′ → AnR0Rn such that for
n → ∞ and maximally entangled states ΦA′R′ and ΦA0R0

of appropriate dimension,

F
(
Dec ◦ Enc

(
ρ⊗n

ABER ⊗ΦA′R′
)

, ρ⊗n
ABER ⊗ΦA0R0

)
→ 1 ,

with quantum communication 1
n log |Ā0| → 1

2 I(A; B|E)ρ.

We can now prove Proposition 3 by using the QSR en-
coder to construct the unitary randomizing channel (5).

Proof of Proposition 3. Let ρABER be a purification of
ρABE. We will show that there exists an ancilla regis-
ter θA′ with purification θA′R′ and a unitary operation
VAn A′En→A0 Ā0En with An A′ ∼= A0 Ā0 such that for the
resulting state

ωA0 Ā0BnEnRnR′ := VAn A′En→A0 Ā0En
(
ρ⊗n

ABER ⊗ θA′R′
)
(11)

we have in the limit n→ ∞,

F(ωA0BnEn , πA0 ⊗ωBnEn)→ 1 and F
(
ωBnEn , ρ⊗n

BE
)
→ 1 ,

(12)

for the choice 1
n log

∣∣Ā0
∣∣ → 1

2 I(A; B|E)ρ. From this we
can pick the unitaries

Ui
An A′En→A0 Ā0En := Wi

A0 Ā0En VAn A′En→A0 Ā0En ,

with {Wi
A0 Ā0En}

|Ā0|2
i=1 a set of Heisenberg-Weyl uni-

taries that realize the partial trace over Ā0, and
VAn A′En→A0 Ā0En implementing VAn A′En→A0 Ā0En . The set
of unitaries

{Ui
An A′En→A0 Ā0En}M

i=1 with M =
∣∣Ā0

∣∣2
then defines a unitary randomizing channel
ΛAn A′En→A0 Ā0En as in (5), with the property

ΛAn A′En→A0 Ā0En(ρ⊗n
ABE ⊗ θA′) = ωA0BnEn ⊗ τĀ0

,

and ωA0BnEn from (11). With (12), this implies the claim.
Now, for VAn A′En→A0 Ā0En we pick the QSR encoder for
ρABER from Lemma 4,

VAn A′En→A0 Ā0En := EncAn A′En→A0 Ā0En ,
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and furthermore we set θA′R′ := ΦA′R′ maximally
entangled. By Lemma 4 and the monotonicity
of the fidelity under quantum operations we have
F
(
ωBnEn , ρ⊗n

BE
)
→ 1. By the same monotonicity and

the triangle inequality for any fidelity based metric
Lemma 4 implies F(ωA0BnEn , πA0 ⊗ωBnEn)→ 1.

Discussion. The converse bound in Proposition 2 to-
gether with the achievability bound in Proposition 3

provide a proof of our main result (Theorem 1). This
establishes the CQMI as an operational measure for the
correlations between A and B from the perspective of
E. Our result can alternatively be read as a conditional
decoupling theorem and hence provides a conceptually
new extension of the decoupling approach to quantum
information theory. The power of decoupling lies in
a fundamental monogamy of entanglement type dual-
ity that allows to retrieve quantum information from a
purifying reference system if and only if it is decou-
pled [30–33]. In that sense, just as Groisman et al.’s
destruction of bipartite correlations is dual to coherent
quantum state merging [8, 37, 49], in our case we can
make use of QSR, and in our companion paper [42], we
even show that the task of conditional erasure is equiv-
alent to QSR. We emphasize that our negligible distur-
bance condition (ii) is exactly crucial for this duality to
work in the tripartite setting. More generally, the de-
coupling technique has numerous applications in areas
as different as cryptography [34], quantum thermody-
namics [35, 36], black hole radiation [9–11], or many
body quantum physics [12]. Hence, we expect our set-
ting of conditional decoupling to have many more ap-
plications. In particular, since the CQMI serves as a
measure for topological order [27, 28, 50], it would be
interesting to further explore this connection in terms
of our findings. Another interesting avenue to explore
on the information theory side is the connection of our
conditional decoupling models to channel resolvability
and wiretap channels (see, e.g., [51] and [52, Sect. 9.4 &
9.5]). Finally, the CQMI is also the basis of the corre-
lation measures squashed entanglement [53] and quan-
tum discord [54], and hence our result has immediate
consequences for the study of these quantities. We dis-
cuss this in our companion paper [42].

Conclusion. We presented new operational interpre-
tations of the CQMI as the deconstruction and condi-
tional erasure cost of tripartite quantum states. Con-
cerning open questions we would like to understand if
the use of the catalytic ancillary register A′ is strictly
necessary for achieving the CQMI. In our companion
paper [42], we show that for conditional erasure, our
achievability result with a maximally mixed register A′

of rate
1
n

log |A′| → max
{

1
2

I(A : E)ρ −
1
2

I(A : R)ρ, 0
}

for ρABER pure ,

is also optimal. However, for achieving the CQMI in
state deconstruction only, the ancilla register might not
be needed at all. We note that in the special case of
Groisman et al.’s model (1)–(2), the ancilla register A′ is
not needed in the asymptotic limit, but it seems to be
useful for deriving tight one-shot bounds [8].
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dent Research (Sapere Aude) and VILLUM FONDEN
via the QMATH Centre of Excellence (Grant No. 10059).
MMW acknowledges support from the NSF under
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