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We use a self-assembled two-dimensional Coulomb crystal of ∼ 70 ions in the presence of an
external transverse field to engineer a simulator of the Dicke Hamiltonian, an iconic model in quan-
tum optics which features a quantum phase transition between a superradiant/ferromagnetic and
a normal/paramagnetic phase. We experimentally implement slow quenches across the quantum
critical point and benchmark the dynamics and the performance of the simulator through extensive
theory-experiment comparisons which show excellent agreement. The implementation of the Dicke
model in fully controllable trapped ion arrays can open a path for the generation of highly entan-
gled states useful for enhanced metrology and the observation of scrambling and quantum chaos in
a many-body system.

Introduction. Quantum many-body systems featuring
controllable coupled spin and bosonic degrees of free-
dom are becoming a powerful platform for the realiza-
tion of quantum simulators with easily tunable param-
eters. These include for example cavity QED systems
[1–8] and trapped-ion arrays [9, 10]. Most often, these
systems have been operated in the far detuned regime
where the bosons do not play an active role in the
many-body dynamics and instead are used to mediate
spin-spin coupling between particles. Great progress has
been realized in this effective spin-model regime includ-
ing the implementation of long range Ising models with
and without an external transverse field and the explo-
ration of rich physics with them such as entanglement
dynamics [1, 2, 11–17], many-body localization [18], time
crystals[19] and dynamical phase transitions [20, 21]. On
the other hand, excluding few particle implementations
[22–31], the regime where the bosonic degrees of freedom
actively participate in the many-body dynamics has re-
mained largely unexplored.

In this work, we focus on this regime and report the
implementation of a simulator of the Dicke model, an
iconic model in cavity QED which describes the coupling
of a (large) spin and an oscillator, in a self-assembled two-
dimensional (2D) crystal of ions. The Dicke model is of
broad interest as it exhibits rich physics including quan-
tum phase transitions and non-ergodic behaviour [32].
More recently it has gained renewed attention due to the
implementation of the closely related Tavis-Cummings
model in circuit QED [33] and its realization in CQED
experiments with ultracold bosonic atoms [6–8]. In the
latter the Dicke model emerged as an effective Hamilto-
nian when one encodes a two-level system in two different
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momentum states of a Bose-Einstein condensate (BEC)
coupled by the cavity field. Within this framework the
normal to superradiant transition maps to a transition
between a standard zero momentum BEC and a quan-
tum phase with macroscopic occupation of the higher-
order momentum mode and the cavity mode.

While CQED experiments have used the intracavity
light intensity and time of flight images to monitor the
phase transition, here we instead probe the two distinct
quantum phases of the Dicke model, by using various con-
trolled ramping protocols of a transverse field across the
critical point (see Fig. 1). We benchmark the dynamics
by experimentally measuring full distribution functions
of the spin degrees of freedom and then comparing them
with theoretical calculations. The spin observables also
allow us to infer the development of spin-phonon corre-
lations.

Our implementation of the Dicke model and corre-
sponding observation of the phase transition in a trapped
ion setup represents a complementary work with respect
to the CQED platform and illustrates the power and uni-
versal nature of quantum simulation. It also opens a path
for using the high level control and tunability of trapped
ions experiments for the generation of highly entangled
states suitable to quantum metrology in the near term
future, and for the exploration of regimes currently in-
tractable to theory.
Spin-Boson System. Our experimental system is com-
prised of a 2D single-plane array of laser-cooled 9Be+

ions in a Penning trap. The internal states forming the
spin-1/2 system are the valence electron spin states in
the Be+ ion ground state which, in the 4.46 T magnetic
field, are split by 124 GHz [16, 17, 34, 35]. The inter-
play of the Coulomb repulsion and the electromagnetic
confining potentials supports a set of normal vibrational
modes of the crystal [36], which we couple to the spin
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FIG. 1. Implementation and dynamical protocol. (a) The
Dicke model is engineered with a Penning trap ion crystal of
N ∼ 70 ions by applying an optical dipole force, resonant only
with the center of mass mode (which generates spin-phonon
interactions) and resonant microwaves (which generates the
transverse field). The system is initially prepared in the nor-
mal phase where all the spins point along the transverse field
and are decoupled from the phonons. (b) As the transverse
field is slowly turned off [using linear or exponential ramp
(shown here) profiles with ramp time τramp] the system en-
ters the superradiant phase after crossing the quantum critical
point at B(tcrit) = Bc where the gap closes. The superradi-
ant phase with macroscopic phonon population, ferromagnet-
ically aligned spins and large spin-phonon entanglement is de-
scribed by the order parameter 〈(â+ â†)Ŝz〉, which is tracked

closely by the re-scaled spin observable |α0|〈|Ŝz|〉. (c) In the
perfectly adiabatic regime the ground state evolves from a
separable spin-paramagnetic and vacuum photon Fock state
into a macroscopic spin-phonon cat state: a superposition
of two opposite spin aligned and displaced-coherent phonon
states (with the sign of the superposition dictated by a parity
symmetry, see SM).

degrees of freedom via a spin-dependent optical dipole
force (ODF), generated by the interference of a pair of
lasers with beatnote frequency ωR [34]. The frequency
ωR is detuned from the center-of-mass mode (COM) fre-
quency, ωCOM, by δ ≡ ωR−ωCOM (Fig. 1). The detuning
is chosen to predominantly excite the COM mode which
uniformly couples all the ions in the crystal [16]. In the
presence of an additional transverse field, generated by
resonant microwaves, we implement the Dicke Hamilto-
nian [37–39] :

ĤDicke/~ = − g0√
N

(
â+ â†

)
Ŝz +B(t)Ŝx − δâ†â. (1)

in the frame rotating with ωR. The operator â(â†)
is the bosonic annihilation (creation) operator for the
COM mode, B(t) is the time-varying strength of the ap-
plied transverse field, and g0 represents the homogeneous
coupling between each ion and the COM mode. Here,
δ < 0. We have introduced the collective spin operators
Ŝα = (1/2)

∑
j σ̂

α
j where σ̂αj is the corresponding Pauli

matrix for α = x, y, z which acts on the jth ion.
The Dicke Hamiltonian exhibits a quantum phase-

transition at Bc = g2
0/|δ| in the thermodynamic limit,

i.e. N → ∞, [40–42], separating the normal (B > Bc )
and superradiant (B < Bc ) phases. The Hamiltonian
remains unchanged under the simultaneous transforma-
tions Ŝz → −Ŝz, Ŝy → −Ŝy and â → −â. These are

generated by the the parity operator Π̂ = eiπ(â†â+Ŝx+ N
2 ).

In the strong-field regime of the normal phase, B �
Bc, the spins and phonons decouple into a product state.
When |B| > |δ| the corresponding ground state, |ψNor

0,N/2〉,
and low lying excitations, |ψNor

n=1,2,...〉, are |ψNor
n,N/2〉 =

|n〉 ⊗ | − N/2〉x. We use |n〉 to denote Fock states and
|M〉α={x,y,z} to denote the fully symmetric (S = N/2)

eigenstates of Ŝα|M〉α = M |M〉α with −N/2 ≤ M ≤
N/2.

In the weak-field limit, B � Bc, of the superradiant
phase, the spin and phonon degrees of freedom are en-
tangled and the ground state is nearly degenerate in the
thermodynamic limit. For a finite system it approaches

|ψS0,N/2〉 = 1√
2

(
|α0, 0〉 ⊗ |N/2〉z ± | − α0, 0〉 ⊗ | −N/2〉z

)
as B → 0, where we have introduced the displaced Fock

states |α, n〉 ≡ D̂(α)|n〉 with D̂(α) = eαâ
†−α∗â the asso-

ciated displacement operator [43]. Here, the sign of the
superposition is dictated by the parity symmetry: for
even N the ground-state will be the symmetric superpo-

sition with 〈eiπ(â†â+Ŝx+ N
2 )〉 = 1, while for odd N the

ground-state is the anti-symmetric superposition with

〈eiπ(â†â+Ŝx+ N
2 )〉 = −1. In this weak-field regime the

spins exhibit ferromagnetic order, characterized by the
non-zero value of the order parameter |Ŝz|, while the
phonon mode acquires a macroscopic occupation |α0|2,

where α0 = g0

√
N/(2δ). The low-lying excitations cor-

respond to displaced Fock states, |ψSn>0,N/2〉, if δ2 < g2
0

and to spin-flips along ẑ, |ψS0,M<N/2〉, if δ2 > g2
0 .

Slow quench dynamics. At the start of the ex-
perimental sequence (see Fig. 1) we prepare the initial
spin state |−N/2〉x with the aid of a resonant microwave
pulse. Doppler-limited cooling of the phonon degree of
freedom leads to an initial phonon thermal state with
mean occupation n̄ ∼ 6. For these parameters the sys-
tem starts in the normal phase close to the ground-state.
The transverse field is then quenched to zero (whilst the
spin-phonon coupling and detuning are held constant)
according to two different profiles: (i) Linear (LIN):
B(t) = B0(1 − t/τramp), and (ii) Exponential (EXP):

B(t) = B0e
−t/τ . We set τramp = 2ms and τ ≈ 600 µs.

To characterize the performance of the simulator and
the entrance into the superradiant phase, we experimen-
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FIG. 2. Benchmarking the simulator: Column (a) shows the experimentally measured distribution function along z, and
(b) the corresponding theoretical simulations neglecting decoherence. Column (c) show the corresponding mean values of the

magnetization 〈|Ŝz|〉, (d) spin-projection 〈Ŝx〉, and (e) Csp−ph ≡
〈(
â+ â†

)
Ŝy

〉
. The filled circles are experimental measurements

(statistical error is on the order of marker size), the colored solid and black dashed lines are the theory results without and with
dephasing [the latter curve is absent in panel (c) as the z-magnetization is less sensitive to this dominant source of decoherence]
and the colored dotted lines are the Lipkin model results. We indicate the time at which Bc is reached in each ramp by a
vertical line. The initial field is B(t = 0)/(2π) ≈ 7.1 kHz, g0/(2π) ≈ 1.32 kHz, δ/(2π) = −1 kHz and J/(2π) = 1.75 kHz.
Respective ion numbers are N = 68 [EXP – row (i)] and N = 69 [LIN – row (ii)].

tally measure the full spin distribution along the z direc-
tion (Fig. 2) by determining the global ion fluorescence
scattered from the Doppler cooling laser on the cycling
transition for ions in |↑〉z [16, 35, 44, 45]. For repeated ex-
perimental trials we infer the state populations, N↑ and
N↓ and calculate the spin-projection Mz ≡ N↑−N/2 for
each experimental shot by counting the total number of
photons collected on a photomultiplier tube in a detec-
tion period, typically 5 ms. Off-resonant light scattering
from the ODF lasers is our main source of decoherence
dominated by single-particle dephasing at a rate Γel [46].

As noted above, the experimental implementation and
corresponding numerical simulations were carried out
with N ≈ 70 atoms. However, a well-defined cross-over
between the normal and superradiant phases, signaled by
a well-defined minimum in the energy gap between the
ground and excited states of the same parity sector [see
Fig. 1 (b)], appears for crystals larger than N & 5 (see
SM).

Our theory-experiment comparisons are based on nu-
merical solutions of the Dicke model dynamics combined
with thermal averaging. If decoherence is neglected the
spin degree of freedom is constrained to the S = N/2
manifold. In this reduced Hilbert space we can ex-
actly treat the quantum dynamics. Whilst for the non-
negligible thermal phonon occupation in this experiment
a classical treatment of the dynamics is sufficient to re-
produce the measured observables, a complete formu-
lation of the quantum dynamics becomes necessary for
colder conditions, when thermal fluctuations are insuffi-
cient to drive dynamics and instead quantum correlations
must be properly accounted for. We observe good quali-
tative agreement between the experimental spin probabil-
ity distribution and the theoretically computed unitary
dynamics as shown in Figs. 2(a) and (b). In particular,

both show a clear transition to a bimodal structure as the
field strength is ramped down through Bc (indicated by
the black vertical line in each plot), with some “smear-
ing” due to the thermal occupation of the phonons.

To quantitatively determine the performance of the
simulator, we plot the evolution of the effective order
parameter 〈|Ŝz|〉/N (experimental values are extracted
from the measured distribution) in Fig. 2 (c), which
clearly builds up as one crosses Bc. The transition is
not abrupt and instead exhibits small amplitude oscil-
lations, most clearly evident in the theoretical calcula-
tions, which reflect the active role of the phonons given
our initial finite thermal phonon occupation. In particu-
lar, our numerical simulations show a dependence of the
oscillation amplitude on the initial phonon occupation
(see SM). However, the frequency of the phonon oscilla-
tions is difficult to determine and interpret, as it depends
on the complex interplay between the magnitude of the
initial phonon occupation and the changing transverse
field. We contrast this behavior with the case when the
phonons can be adiabatically eliminated and realize an
effective spin Lipkin model, ĤLM/~ = (J/N)Ŝ2

z +B(t)Ŝx
where J = g2

0/δ. The Lipkin model dynamics features a
sharper increase in magnetization after the critical point,
and significant disagreement with the experimental ob-
servations.

To further benchmark the simulator we carry out sim-
ilar measurements of the spin distribution along the x
direction, extracted by applying a global π/2 pulse be-
fore the fluorescence measurement. Fig. 2 (d) shows the

mean-value of the spin-projection 〈Ŝx〉. We observe x-
depolarization as the system exits the normal phase. The
Lipkin model dynamics also exhibits a sharper depolar-
ization across Bc than the one seen in the experiment.
In this case, however, we do observe deviations between
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the experiment and the ideal theory. The reason is that
unlike the z-magnetization, this observable is strongly af-
fected by dephasing. Since treating the full spin-boson
system in the presence of decoherence is computation-
ally challenging, we model the effect of dephasing as
〈Ŝx〉 → 〈Ŝx〉e−Γt and 〈Ŝz〉 → 〈Ŝz〉 where Γ = Γel/2,
which is asymptotically valid in the B � Bc and B � Bc
limits [47]. We can determine Γel experimentally when
B = 0, and we find Γel ≈ 120 s−1. However, at large B,
most clearly evidenced in the LIN protocol, the demag-
netization is faster than this estimate, and is consistent
with Γel = 280 s−1[48]. For both ramps we observe ex-
cellent agreement to the experiment when dephasing is
accounted for.

Although measuring the phonon population might be
possible following the protocol reported in Ref. [49], we
instead infer the build-up of spin-phonon correlations
from the time evolution of the spin observable 〈Ŝx〉.
Specifically, we assume the dynamics of the system are
captured by the Lindblad master equation for the density
matrix of the spin-phonon system ρ̂,

dρ̂

dt
= − i

~

[
ĤDicke, ρ̂

]
+

Γel
2

N∑
i=1

(σ̂zi ρ̂σ̂
z
i − ρ̂) , (2)

where single-particle dephasing is taken to be the domi-
nant decoherence mechanism. From the master equation
we derive the equation of motion d

dt 〈Ŝx〉, and rearrange
to obtain the relation (see SM)

Csp−ph ≡ 〈
(
â+ â†

)
Ŝy〉 ≡

√
N

g0

(
Γel〈Ŝx〉+

d

dt
〈Ŝx〉

)
.

(3)
We extract the spin-phonon correlation from the ex-
perimental data by evaluating the RHS of the above
expression, and calculating the time-derivative numeri-
cally with a one-sided derivative. The results are plot-
ted in Fig. 2(e). We use the same value of Γel as in
Fig. 2(d). The results are compared with a theoretical
calculation of Csp−ph [again modelling dephasing using

〈Ŝx〉Γ ≡ 〈Ŝx〉Γ=0e
−Γt]. In principle, the correlator van-

ishes when evaluated for the ground-state at any field
strength. However, for these slow quenches it acquires
a finite value, which in particular grows in the superra-
diant phase, due to population of excited states. This
is attributable due to diabatic excitations created during
the ramping protocol or the initial thermal phonon en-
semble. Thus, while the correlation Csp−ph shows similar
dynamical features observed in the other observables, it
gives an alternative insight into the excitations created
during the ramp.

While we have used the two ramp profiles to bench-
mark the experiment, we note that the EXP ramp has
more utility in preparing a final state close to the ex-
pected ground-state |ψS0,N/2〉 in the superradiant phase.

For instance, the EXP ramp produces a clearer bimodal
structure in the spin probability distribution along z, and
associated larger mean absolute spin projection 〈|Ŝz|〉.

Future experiments could improve assesment of the adi-
abaticity of the quench protocols by measuring any co-
herences present between the different spin components,
as discussed below.

Accounting for spin-phonon entanglement will be key
to properly diagnose the generated many-body quan-
tum state. For example, tracing out the phonons from
|ψS0,N/2〉 will exponentially suppress the coherence be-

tween the spin states | ± N/2〉z (see SM). To bench-
mark the performance of the adiabatic dynamics it is
then highly desirable to first perform a protocol to disen-
tangle the spins and phonons and only after it character-
ize the state by independently measuring the spins and
the phonons without information loss.

To disentangle spin and phonons we propose to in-
stantaneously quench the detuning δ → δ′ = 2δ at the
end of the LAA ramp (B → 0) and then let the sys-
tem evolve for a time td = π/δ′. At td the phonons are

coherently displaced by −g0

√
N/(2|δ|)〈Sz〉 back to the

origin, while the spins only acquire an irrelevant global
phase [39]. The resulting disentangled state ideally be-

comes (1/
√

2)[|+α0, 0〉|+N/2〉z + |−α0, 0〉|−N/2〉z]→
(1/
√

2)|0〉 ⊗ [| + N/2〉z + | − N/2〉z] which has maximal
spin coherence.

Summary and discussion. We have reported the ex-
perimental realization of a simulator of the Dicke model
with a 2D ion crystal of ∼ 70 ions and verified its
dynamics through extensive theory-experiment compar-
isons. Our trapped-ion simulator provides a complemen-
tary approach to related realizations in cold atoms [6–
8], which is a key step in benchmarking quantum sim-
ulators which go beyond the capacity of classical com-
putation. Our realization of a many-ion simulator of
the Dicke model also paves the way for future investi-
gation of dynamical phase transitions [20, 21], quantum
chaos and fast scrambling via out-of-time order correla-
tion measurements [17, 50–53]. Moreover, the tunability
of the trapped-ion setup opens the possibility of investi-
gating more general spin-boson models [54], in particular
by operating beyond the uniform coupling regime or the
preparation of states outside the fully symmetric Dicke
manifold.

The slow quench protocols demonstrated above present
a path to generate highly entangled states useful for
quantum enhanced metrology [55]. Cat-states are a use-
ful metrological resource as they are composed of a co-
herent superposition of states that are macroscopically
displaced in phase-space, leading to quantum-enhanced
phase-sensitivity up to the Heisenberg limit [56, 57]. In
particular, the spin-boson cat-state |ψS0,N/2〉 would be a

metrological resource for sensing collective spin rotations
[56], motional rotation [25, 58], and coherent displace-
ments for force sensing applications [59]. This could be
achieved by using smaller systems (e.g., N ∼ 20), reduc-
ing the initial thermal population of the phonon mode,
and shifting the detuning δ away from Bc, which in-
creases the minimum energy gap at the critical point,
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and consequently the characteristic time-scale to remain
adiabatic (see SM). We expect this regime will be acces-
sible in the near term future in part due to the successful
implementation of electromagnetic induced transparency
cooling [60].
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