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Letter [1] claims to provide a general method for
constructing local Hamiltonians that do not fulfill the
ETH [2–6]. We argue that the claim is misguided.

Letter [1] reports the construction of block-diagonal
Hamiltonians with nonlocal many-body conserved quan-
tities. In the second example, one such quantity is used
to construct a Hamiltonian with two exponentially large
symmetry sectors (the onsite magnetic fields and local
spin interactions were chosen to be different in the two
sectors). It is not surprising that the ETH is violated
when mixing them. Random matrix theory, the base of
our understanding of the ETH [6], only applies within
each symmetry sector and not to the entire Hamilto-
nian [6–8]. Consequently, the ETH should be studied
within each sector separately.

Conserved nonlocal many-body operators associated
to lattice translations, point-group symmetries, and
particle-hole transformations [7, 9–15] also generate
block-diagonal Hamiltonians. In the chaotic regime of
such models, in contrast to models with local conserved
quantities (e.g., total particle number [9–13]) and the
models in Refs. [1, 16–18], the eigenstate expectation
values of few-body operators are usually the same (up
to finite-size effects) in different symmetry sectors [see
Fig. 1(a)]. The need to analyze each sector separately be-
comes apparent when studying the off-diagonal matrix el-
ements [15], an equally important part of the ETH [6]. At
any energy, the average magnitude of off-diagonal matrix
elements of few-body operators that do not break sym-
metries of the Hamiltonian is generally different within
different symmetry sectors. Also, they vanish between
eigenstates that belong to different sectors. Hence, mix-
ing different symmetry sectors may lead one to conclude
that the ETH is violated while it is not.

In Fig. 1(b), we plot off-diagonal matrix elements, and
their running average, within the same symmetry sectors
as in Fig. 1(a). The mismatch of their magnitudes is
apparent. Their ratio is determined by the ratio of the
Hilbert space dimensions [6, 19], see inset in Fig. 1(b).
This shows that different symmetry sectors should not
be mixed when discussing the ETH.

We are also troubled by the statement in Ref. [1] that
numerical simulations have shown that the ETH is valid
for Hamiltonians with: (i) translational invariance, (ii)
no local conserved quantity, and (iii) local [O(1) support]
interactions. None of these conditions is necessary for the
onset of quantum chaos and the validity of the ETH.

FIG. 1. (a) Diagonal and (b) off-diagonal (for |Eα+Eβ |/N ≤
0.1) matrix elements of the nearest-neighbor spin correla-
tions σ̂zi σ̂

z
nni

for the ferromagnetic transverse-field Ising model
(g = J) in 2D [14, 15]. Continuous lines in (b) depict run-
ning averages. The inset in (a) shows that the fluctuations of
the diagonal matrix elements are different in the two sectors
shown. Inset in (b): ratio R between the running averages of
the off-diagonal matrix elements. The dashed line shows that,
as expected from the ETH [6, 19], the ratio R is very close to
the square root of the inverse ratio between the Hilbert space
dimension D of the sectors. λẐ2

, λŜx
, λŜy

, λŜxy
are the eigen-

values of the spin-flip, mirror-x, mirror-y, and mirror along
the x = y line, symmetries, respectively. The results shown
are for the zero momentum sector of a lattice with N = 5× 5
sites (see Ref. [15] for further details).

An early discussion on the connection between the
ETH and thermalization in many-body lattice Hamilto-
nians involved a non-translationally invariant system [4].
Many of the models in which the ETH has been verified
have a local conserved quantity, the total particle number
or magnetization [9–13]. Finally, in Ref. [20], the ETH
was verified in a model of hard-core bosons with dipolar
(1/r3) interactions in the presence of a harmonic trap,
which does not satisfy any of the three conditions.
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