
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nonequilibrium Scaling Behavior in Driven Soft Biological
Assemblies

Federica Mura, Grzegorz Gradziuk, and Chase P. Broedersz
Phys. Rev. Lett. 121, 038002 — Published 18 July 2018

DOI: 10.1103/PhysRevLett.121.038002

http://dx.doi.org/10.1103/PhysRevLett.121.038002


Non-equilibrium scaling behaviour in driven soft biological assemblies

Federica Mura,1, ∗ Grzegorz Gradziuk,1, ∗ and Chase P. Broedersz1, †

1Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience,
Ludwig-Maximilians-Universität München, D-80333 München, Germany.

(Dated: April 13, 2018)

Measuring and quantifying non-equilibrium dynamics in active biological systems is a major chal-
lenge, because of their intrinsic stochastic nature and the limited number of variables accessible
in any real experiment. We investigate what non-equilibrium information can be extracted from
non-invasive measurements using a stochastic model of soft elastic networks with a heterogeneous
distribution of activities, representing enzymatic force generation. In particular, we use this model
to study how the non-equilibrium activity, detected by tracking two probes in the network, scales as
a function of the distance between the probes. We quantify the non-equilibrium dynamics through
the cycling frequencies, a simple measure of circulating currents in the phase space of the probes.
We find that these cycling frequencies exhibit power-law scaling behavior with the distance between
probes. In addition, we show that this scaling behavior governs the entropy production rate that can
be recovered from the two traced probes. Our results provide insight in to how internal enzymatic
driving generates non-equilibrium dynamics on different scales in soft biological assemblies.

Cells and tissue constitute a class of non-equilibrium
many-body systems [1–5]. Indeed, non-equilibrium ac-
tivity has been observed in various biological systems,
including membranes [6, 7], chromosomes [8], and the cy-
toplasm [9–11]. A distinguishing physical feature of such
biological assemblies is that they are driven out of equi-
librium collectively by internal enzymatic processes that
break detailed balance at the molecular scale. The active
nature of living matter on larger scales can be determined
non-invasively by observing the steady-state stochastic
dynamics of mescoscopic degrees of freedom using time-
lapse microscopy experiments: The non-equilibrium dy-
namics of these systems can manifest as circulating prob-
ability currents in a phase space of mesoscopic coordi-
nates [2, 12–14]. However, it remains unclear how such
non-equilibrium measures depend on the spatial scale on
which the measurement is performed. A theoretical un-
derstanding of the spatial scaling behavior of broken de-
tailed balance in internally driven biologically assemblies
may reveal how to extract quantitative information from
measurable phase space currents to characterize the ac-
tive nature of the system.

Here we consider a simple, yet general model for an in-
ternally driven elastic assembly to study non-equilibrium
scaling behavior. This assembly is driven out of equi-
librium by heterogeneously distributed stochastic forces,
representing internal enzymatic activity (Fig. 1). We
quantify the non-equilibrium dynamics of such an assem-
bly by the cycling frequencies associated to steady-state
circulating currents in phase space [13, 14]. To study
how broken detailed balance manifests on different scales
in a given system, we investigate how the cycling fre-
quency of a pair of tracer probes depends on the spatial
distance between these probes. Interestingly, the cycling
frequencies in our model exhibit a power-law scaling with
the distance between probes with an exponent that de-
pends on the dimensionality of the system. To provide

FIG. 1. Schematic illustrating soft viscoelastic networks with
heterogeneous driving for various types of cellular systems.
A) chromosome B) red blood cell membrane C) cytoskeletal
network with in D-F associated bead-spring models with het-
erogeneous active driving. The color of the bead indicates
the intensity of activity, representing the variance (increasing
from blue to red) of the associated active noise process.

a conceptual understanding of this scaling behavior, we
develop an analytical calculation of these exponents. Fur-
thermore, we show that the exponent associated to the
power law of the cycling frequencies also underlies the
scaling behavior of the entropy production rate that can
be recovered from measured trajectories. Therefore, we
provide a framework to study the spatial scaling behavior
of non-equilibrium measures in soft elastic assemblies.

Our model consists of a d-dimensional elastic network
of N beads, immersed in a simple Newtonian liquid
at temperature T [15–18]. We assume a lattice struc-
ture where each bead is connected to its nearest neigh-
bours by springs of elastic constant k, as illustrated in
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Fig. 1. For simplicity, we model internal enzymatic ac-
tivity by a Gaussian white noise with variance αi at
bead i. By assuming white noise, we effectively consider
the dynamics of biological systems on time scales much
longer than the characteristic timescales of the active
processes [13, 19, 20]. Importantly, these activity am-
plitudes, αi ≥ 0, are spatially heterogeneous, reflecting
a spatial distribution of active processes in the system.
These activity amplitudes are drawn independently from
a distribution pα with mean ᾱ < ∞ and standard devi-
ation σα < ∞ for each realization of the system. This
description of a heterogeneously driven assembly is simi-
lar to bead-spring models in which the beads are coupled
to distinct heat baths at different temperatures [21–23].

The temporal evolution of the probability distribution,
p(x, t), of the beads’ displacements x, relative to their
rest positions, is governed by a Fokker-Planck equation:

∂p(x, t)

∂t
= −∇ · [Axp(x, t)] +∇ ·D∇p(x, t),

= −∇ · j(x, t)
(1)

where j(x, t) = Axp(x, t) −D∇p(x, t) is the probability
current. Here, A is the elastic interaction matrix, incor-
porating all nearest neighbor spring interactions between
beads; the mobility matrix is assumed to be diagonal to
exclude hydrodynamic interactions between the beads,
and is absorbed in A. The diffusion matrix, D, is di-

agonal with elements dij = δij
kB(T+αi)

γ , where γ is the
damping coefficient describing the viscous interaction be-
tween a bead and the immersing liquid. The steady-state
dynamics of this active network is described by

p(x) =
1√

(2π)dN det C
e−

1
2x

TC−1x, (2)

where C = 〈x ⊗ x〉 is the covariance matrix, which
can be obtained by solving the Lyapunov equation
AC + CAT = − 2D [24]. In the simplest limit, the
activities are spatially homogeneous: αi = α ∀ i, result-
ing in effectively equilibrium dynamics, with p(x) given
by the Boltzmann distribution (C−1 = −A/(T + α))
and j = 0. By contrast, in heterogeneously driven sys-
tems with non-identical αi’s, we obtain Non-Equilibrium
Steady-State dynamics with j 6= 0 [24].

If we were able to observe the stochastic motion of all
beads in the network, we could directly measure the full
probability current j(x) and extract information about
the complete non-equilibrium dynamics of the system.
However, in an actual experiment typically only a small
subset of the degrees of freedom can be tracked (Fig. 2A).
What information on the non-equilibrium dynamics of
the system can be extracted from such limited observa-
tions? To address this question, we investigate a scenario
where only a few degrees of freedom are accessible.

We start by reducing our description to the marginal
distribution, pr(xr) =

∫
dxk 6∈[r]p(x1, x2, .., xdN ), of a

FIG. 2. Reduced system of tracked probed. A) Schematic of
two fluorescently labelled probe beads in a larger system. B)
Elastic force acting on bead j obtained at different time steps
of a simulation of the Langevin dynamics of the full system
(blue points), and the effective linear force, Aeffxr, from ana-
lytical calculations (light blue plane). C) Probability density
(color map) and probability current (white arrows) calculated
analytically from the effective 2D system, together with re-
sults from simulating the full system in the inset. D) The

non-conservative part of the effective force field:
(Aeff−AT

eff)

2
xr

(black arrows) can contribute to the rotation in phase space
in non-equilibrium systems. Note, for αi = α ∀ i (effective
equilibrium scenario), Aeff becomes symmetric.

subset [r] of n tracked degrees of freedom xr. By integrat-
ing out the subset [l] of m unobserved degrees of freedom
xl on both sides of Eq. (1) and taking the steady-state
limit, we obtain (see supplementary material):

0 = −∇ · [Aeffxrpr(xr)] +∇ ·D[r,r]∇pr(xr), (3)

where the sub-index [r, r] of a matrix indicates the sub-
matrix corresponding to the reduced set of observed vari-
ables. In addition, we introduce the effective linear in-
teraction (Fig. 2B), which can be written as Aeffxr, with
Aeff = A[r,r] + A[r,l]C[l,r]C

−1
[r,r]. Here, A[r,l] and C[l,r] are

rectangular matrices of sizes [n×m] and [m×n], given by
the elements of indices [r, l] of A and [l, r] of C, respec-
tively. Thus, we obtain an effective stationary Fokker-
Planck equation for the reduced system (Eq. (3)). From
this, we obtain the exact steady-state reduced probability
distribution pr(xr) and probability current density:

jr(xr) = Aeffxrpr(xr) + D[r,r]C
−1
[r,r]xrpr(xr), (4)

which can, in principle, be measured from the trajectories
of the observed degrees of freedom (Fig. 2C).

We can use this reduced description to investigate how
broken detailed balance manifests at different scales in
the network. In particular, we consider the simplest case
of a reduced system of only two tracked beads in a larger
system, as illustrated in Fig. 2A. It is convenient to quan-
tify the probability currents in the 2D phase space of
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these two tracer beads by a pseudoscalar quantity: the
average cycling frequency around the origin [13, 14, 25].
For linear systems, we can express the reduced proba-
bility current as jr(xr) = Ωrxrpr(xr), where Ωr is a 2D
matrix with purely imaginary eigenvalues λ = ±iω, with
ω representing the cycling frequency.

This cycling frequency can be measured experimen-
tally for a pair of degrees of freedom, e.g. the displace-
ments in a certain direction of two probe beads at a dis-
tance r. This frequency will depend on the specific config-
uration of all activity amplitudes αi. We aim to compute
how this cycling frequency depends on r after averag-
ing over all activity configurations. Since ω is expected
to be distributed symmetrically around 0, we calculate√
〈ω2(r)〉α for pairs of beads separated by a distance r.

Here, the average 〈...〉α is taken over an ensemble of activ-
ities {αi} drawn from the distribution pα. Intuitively, the
magnitude of the circulation of currents in phase space
typically decreases with the distance between the probes,
as shown in Fig. 3A. This reduction of the circulation is
reflected by a decrease of the cycling frequency ω with
distance. Remarkably,

√
〈ω2(r)〉α appears to depend on

the distance between the tracer beads, r, as a power law,√
〈ω2(r)〉α ∝ r−µ, with µ ≈ 1.9 for a 1D chain with a

folded Gaussian or an exponential distribution of activi-
ties, as depicted in Fig. 3B.

To investigate how the architecture of the system af-
fects the scaling behavior of the cycling frequencies, we
considered different network structures, including square,
triangular, and cubic lattices. In particular, we deter-
mined the ensemble average 〈..〉α by performing a spatial
average for computational convenience (supplementary
materials). Interestingly, we find that the characteristic
exponent µ appears to depend strongly on the dimen-
sionality of the lattice, but not on its geometry, as shown
in Fig. 3B-C. These results suggest that the distance de-
pendence of the cycling frequency is determined in part
by the long wavelength elastic properties of the system.
Importantly, however, the scaling of cycling frequency
is sensitive to the spatial structure of the activities. For
example, in the simple case of a delta-distributed (single-
source) activity on a 1D chain, we find µsingle ≈ 2.4
(Fig. 3B) in contrast to the value 1.9 obtained above
for spatially distributed activities.

To obtain more insight into the scaling behavior of
the cycling frequencies, we derive an analytical expres-
sion for the cycling frequency as a function of the dis-
tance between the observed beads, ω(r). In general, it
can be shown that for a linear system described by a
Fokker-Planck equation, the cycling frequencies are given
by (supplementary materials):

ωij =
1

2γ

〈τij〉√
det C[r,r]

(5)

where τij := x×fr(x) = xifj(x)−xjfi(x) is a generalized
phase space torque in the xi-xj plane, with fi(x) denot-

FIG. 3. Spatial scaling behavior of cycling frequencies. A)
Steady-state current cycles in phase space of the displace-
ments (along the lattice direction) of two tracer beads for a
nearby pair of probes (left) and distant pair of probes (right).

B) Scaling behavior of the cycling frequencies,
√

〈ω2(r)〉, of
a pair of probes beads as a function of their spatial distances,
obtained for a 1D chain and different activity distributions,
as indicated in the legend. C) Scaling behavior of the cycling

frequencies,
√

〈ω2(r)〉/〈ω2(1)〉, obtained for different lattices
and a folded Gaussian activity distribution. Triangular and
square markers represent triangular and square/cubic lattices,
respectively. Light/dark blue triangles represent triangular
networks with zero/finite rest length springs. In both B) and
C) we used ᾱ/T = 0.15

ing the deterministic force acting on the ith bead. This
result is intuitive: for an overdamped system the mean
angular velocity is proportional to the mean torque and
the factor 1/

√
det C[r,r] ensures coordinate invariance.

For the 1D chain of beads (Fig. 1D), Eq. (5) reduces to:

ωij =
k

γ

∂̃2
2cij√

det C[r,r]

, (6)

where cij is the i, jth element of the covariance matrix
C, and with the discrete second derivative across rows
denoted as: ∂̃2

2cij = ci,j+1 − 2ci,j + ci,j−1. Thereby, we
have reduced the problem of calculating ω(r) to finding
the covariance matrix of the system.

The structure of D suggests a natural decomposition
of the covariance matrix C into equilibrium (C) and
non-equilibrium (C∗) contributions: C = (kBT/k)C +
(kBᾱ/k)C∗, such that C and C∗ are dimensionless. Both
C and C∗ can be found by solving the Lyapunov equa-
tion, which for the 1D chain is given by

∂̃2
1cij + ∂̃2

2cij = −2δij (7)

∂̃2
1c
∗
ij + ∂̃2

2c
∗
ij = −2δij

αi
ᾱ
, (8)
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where ∂̃2
1 indicates the discrete second derivative across

columns. These equations represent discrete stationary
diffusion equations, with sources of divergence given by
δij and δij(αi/ᾱ), respectively. This result prescribes
how a spatial distribution of activities structures the co-
variance matrix.

We can make further progress by noting that the prin-
ciple of detailed balance imposes ωij = 0 at thermal equi-

librium, which together with Eq. (6) implies ∂̃2
2cij = 0.

We can, therefore, substitute ∂̃2
2cij in Eq.(6) by ∂̃2

2c
∗
ij ,

and then expand this equation up to linear order in ᾱ/T
to obtain

ωij =
k

γ

ᾱ

T

∂̃2
2c
∗
ij√

det C[r,r]

. (9)

We proceed by calculating C∗ for a given distribution
of activities {αi}. Because of the linearity of Eq. (8),
C∗ is a superposition of steady-state solutions to single-
source problem, i.e. a delta-distribution for which all
but one of the activities would be set to zero. Denoting
the element of C∗ at a distance r from the single activ-
ity source by c∗(r), we obtain the “covariance current”
∂rc
∗(r) ∼ 1/r. Here we employed a continuous approxi-

mation of the discrete diffusion problem in Eqs. (7) and
(8). Thus, c∗(r) = −a ln(r) + b for a single-source prob-
lem with integration constants a and b, representing the
Green’s function for our problem. Using this expression
for c∗(r) together with Eq. (9), we obtain for the single

source case: ω2
single(r) = k2

γ2
α2

T 2
a2

r4
1

detC[r,r](r)
, where α is

the source’s activity.
Next, we use a superposition of single source solutions

for c∗(r) to obtain the non-equilibrium contribution of
the covariance matrix C∗ for a specific configuration of
many activity sources {αi}. Using this result in conjunc-
tion with Eq. (9) and performing an ensemble average
over the distribution of activity realizations, we arrive at
the central result

〈ω2(r)〉α =
k2

γ2

σ2
α

T 2

πa2

2r3

1

det C[r,r](r)
. (10)

Finally, we note that the elements of the equilibrium co-
variance matrix are given by ci,j = min(i, j)−ij/(N+1),
and find that for r � N , det C[r,r](r) exhibits a power

law behavior, det C[r,r](r) ∼ Nr. Therefore, from this
analysis we find for a 1D chain with heterogenous activ-
ities µ = 2, independent of the activity distribution pα.
Furthermore, we find µsingle = 2.5 for a single-source ac-
tivity, in accord with our numerical result (see Fig.3B).
This calculation provides insight into how a combination
of features of the equilibrium and non-equilibrium con-
tributions to the covariance matrix determine the spatial
scaling behavior of cycling frequencies.

Non-zero cycling frequencies directly reflect broken de-
tailed balance, suggesting a connection between ω and

FIG. 4. Spatial scaling behavior of the average entropy pro-

duction rate, 〈Π(2)
r 〉, of a pair of probe beads as a function of

their spatial distance r, obtained for different lattices and a
folded Gaussian activity distribution with ᾱ/T = 0.15. Note
the entropy production rate of the reduced system is scaled
by the total entropy production rate of the whole network,
Πtot. Triangular and square markers represent triangular
and square/cubic lattices, respectively. Light/dark blue trian-
gles represent triangular networks with zero/finite rest length
springs.

measures of the internal driving, including the rate of
entropy production. For a Markovian system described
by a Fokker-Planck equation, the total entropy produc-
tion rate under steady-state conditions is given by [26]:

Πtot = kB

∫
dx

jT (x)D−1j(x)

p(x)
, (11)

where kB is Boltzmann’s constant. The validity of this re-
sult relies on the equivalence between the Fokker-Planck
and Langevin descriptions. However, the marginal prob-
ability density of the reduced system is described by a
Fokker-Planck equation only at steady-state (see Eq. (3)
and supplementary materials), reflecting the loss of
Markovianity after coarse-graining. Even if the real dy-
namics of the reduced system are non-Markovian, we
can define an effective Markovian dynamics through the
Langevin equation

dxr(t)

dt
= Aeffxr(t) +

√
2D[r,r] ξr(t), (12)

with Gaussian white noise ξr(t). This equation of mo-
tion results in the exact steady-state probability and cur-
rent densities, but with an approximate stochastic dy-
namics. In particular, the effective interaction matrix
Aeff (see Eq. (3)) captures only the average interaction
between the traced variables, as illustrated in Fig. 2B.
Furthermore, in contrast to the full deterministic forces
(Ax), these effective interactions (Fig. 2C) need not to
derive from a potential and, thus, may contain a non-
conservative component (Fig. 2D).

The entropy production rate associated with the effec-
tive Markovian dynamics in Eq.(12) is given by

Πr = kB

∫
dxr

jTr (xr)D
−1
[r,r]jr(xr)

pr(xr)
≤ Πtot, (13)
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where jr(xr) is defined in Eq. (4). Note, estimating Πr by
using the Markovian formalism allows us to set a lower
bound for the total entropy production rate Πtot (sup-
plementary materials), similar to what already shown for
discrete systems [27]. In the n = 2 case with two traced
degrees of freedom that we consider here, Eq. (13) re-
duces to (supplementary materials)

Π(2)
r = kBω

2 Tr (C[r,r]D
−1
[r,r]). (14)

This result provides an explicit relation between the par-
tial entropy production rate and the cycling frequency

ω. Note, all quantities in the expression for Π
(2)
r can

be observed in an experiment, providing a direct way
to non-invasively determine the reduced rate of entropy
production for a set of traced degrees of freedom. Since
Tr (C[r,r]D

−1
[r,r]) depends only weakly on r, as long as

1� r � N , we expect a scaling behavior 〈Π(2)
r 〉 ∼ r−2µ.

This result shows that the spatial scaling behavior of the
cycling frequencies directly determines the spatial scaling
behavior of the entropy production rate.

In summary, we here demonstrate theoretically how
experimental measures of non-equilibrium activity in in-
ternally driven linear networks are affected by the length-
scale at which the system is observed. Specifically, we
developed a general framework to predict the scaling be-
havior of cycling frequencies and the entropy production
rate that can be inferred by tracing pairs of degrees of
freedom. We showed the exponent µ that governs this
behavior for a system with heterogeneous random activ-
ities, is insensitive to the details of distribution of ac-
tivities. However, this exponent depends sensitively on
the dimensionality of the system. The predicted scaling
behaviour can be tested, for instance, by analyzing the
fluctuations of pairs of tracer particles embedded in bio-
logical [9–11, 28, 29] and artifical [30–35] systems under
non-equilibrium steady-state conditions.
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Physics supported by NSF grant PHY-1607611.
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Appendices
DERIVATION OF EQ. (3)

Here, we derive Eq. (3), which describes the steady state distribution of traced variables. Integrating out the unob-
served degrees of freedom on both sides of the Fokker-Plank equation (Eq. (1)), and using the Einstein notation for
summing over repeated indexes, we obtain:

(I)∫
dxl∂tp(x) = −

(II)∫
dxl∂i[aijxjp(x, t)] +

(III)∫
dxldij∂i∂jp(x, t) (15)

where aij and dij are the elements of the interaction matrix A and the diffusion matrix D, respectively. Rewriting
the probability as p(x, t) = p(xl|xr, t)pr(xr, t), we can separately calculate each term in Eq.(15). The first term (I)
gives: ∫

dxl∂tpr(xr, t)p(xl|xr, t) = ∂tpr(xr, t)

∫
dxlp(xl|xr, t) = ∂tpr(xr, t) (16)

For the second term (II), we obtain∫
dxl∂i[pr(xr, t)p(xl|xr, t)aijxj ] = δi,[r]∂i[pr(xr, t)

∫
dxlp(xl|xr, t)aijxj ]

= δi,[r]∂i[pr(xr, t)aij 〈xj |xr, t〉]
(17)

where δi,[r] = 1 if xi is one of the observed coordinates and zero otherwise. In the first line we use that the probability
density vanishes at infinity faster than 1/x. Similarly, the third term (III) can be written as∫

dxldij∂i∂j [pr(xr, t)p(xl|xr, t)] = δi,[r]δj,[r]dij∂i∂j [pr(xr, t)

∫
dxlp(xl|xr, t)]

= δi,[r]δj,[r]dij∂i∂jpr(xr, t)

(18)

We seek a description for the stochastic dynamics, which only depends on the observed degrees of freedom. This
can be achieved by taking the steady-state limit. In this case, the conditional average appearing in Eq.(17) yields
〈xl|xr〉 = C[l,r]C

−1
[r,r]xr [36]. We substitute Eqs. (16)-(18) in Eq. (15) to obtain Eq. (3), which therefore holds only at

steady-state.

DERIVATION OF EQ. (5)

Here we derive the expression in Eq. (5) for the cycling frequencies. To this end, we first show that the right hand
side of this equation is invariant under orientation preserving linear transformations restricted to the 2-dimensional
reduced subspace. Let us consider such a transformation: x′r = Bxr, f ′r = Bfr, and denote by C′[r,r] the reduced
covariance matrix in the transformed coordinates.

BC[r,r]B
T = C′[r,r] =⇒ det B =

√
det C′[r,r]

det C[r,r]
(19)

Using this result together with the transformation properties of the vector product, we obtain

〈τij〉√
det C[r,r]

=
〈xr × fr(x)〉√

det C[r,r]

=
〈x′r × f ′r(x

′)〉√
det C[r,r]

1

det B
=

〈
τ ′ij
〉√

det C′[r,r]

. (20)

The coordinate invariance of this term allows us to specifically consider the convenient coordinates in which C[r,r] = I:

1

γ
〈τij〉 =

1

γ
〈xr × fr(x)〉 =

1

γ

∫
dxr 〈xr × fr(x)|xr〉 pr(xr) =

1

γ

∫
dxr xr × 〈fr(x)|xr〉 pr(xr) (21)
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We can further expand this expression by using Ωr = Aeff + D[r,r]C
−1
[r,r]. (The expression for Ωr follows immediately

from Eq. (4), since we require jr(xr) = Ωrxrpr(xr).)

1

γ
〈fr(x)|xr〉 = Aeffxr = Ωrxr −D[r,r]C

−1
[r,r]xr. (22)

Combining this result with Eq. (21), we arrive at

1

γ
〈τij〉 =

∫
dxr xr × (Ωrxr)pr(xr)−

∫
dxr xr × (D[r,r]C

−1
[r,r]xr)pr(xr). (23)

Using the explicit form of Ωr (see Eq. (31)), we evaluate the first term in this expression,∫
dxr xr × (Ωrxr)pr(xr) =

∫
dxr ωij(x

2
i + x2

j )pr(xr) = ωij(cii + cjj) = 2ωij . (24)

In addition, we confirm by direct calculation, that, as expected, the second term in Eq. (23) vanishes:

−
∫
dxr xr × (D[r,r]xr)pr(xr) =

∫
dxr (−xj , xi)

(
dii dij
dij djj

)(
xi
xj

)
pr(xr) = (25)

=

∫
dxr [−diixixj − dijx2

j + dijx
2
i + djjxixj ]pr(xr) = (26)

= cij︸︷︷︸
0

(djj − dii) + dij (cii − cjj)︸ ︷︷ ︸
0

= 0 (27)

Altogether, this gives us the desired result:

1

2γ

〈τij〉√
det C[r,r]

= ωij (28)

DERIVATION OF EQ.13

Here we show that Πtot ≥ Πrr.

Πtot −Πr

kB
=

∫
dx

jT (x)D−1j(x)

p(x)
−
∫
dxr

jTr (xr)D
−1
[r,r]jr(xr)

p(xr)

=
γ

kB

∑
j∈[l]

∫
dx

v2
j (x)

(T + αj)
p(x) +

γ

kB

∑
i∈[r]

[(∫
dx

v2
i (x)

(T + αi)
p(x)

)
−
∫
dxr
〈vi(x)|xr〉2

(T + αi)
p(xr)

]

=
γ

kB

∑
j∈[l]

∫
dx

v2
j (x)

(T + αj)
p(x) +

∑
i∈[r]

∫
dxr

[(∫
dxl

v2
i (x)

(T + αi)
p(xl|xr)p(xr)

)
− 〈vi(x)|xr〉2

(T + αi)
p(xr)

]
=

γ

kB

∑
j∈[l]

〈v2
j (x)〉

(T + αj)
+
∑
i∈[r]

∫
dxr

(
〈v2
i (x)|xr〉 − 〈vi(x)|xr〉2

)︸ ︷︷ ︸
≥0

p(xr)

(T + αi)

 ≥ 0

(29)

where in the second line we use that D is diagonal, v(x) = j(x)/p(x), and jr(xr) = p(xr)
∫
dxl vr(x)p(xl|xr) =

p(xr) 〈vr(x)|xr〉, which follows from the derivation of Eq. (3).

DERIVATION OF EQ. (14)

Here we derive the expression for the partial entropy production rate in terms of the cycling frequencies (see Eq.(14)).
It is convenient to substitute the current field j = Ωxp(x) in Eq. (11), which gives

Π = kB

∫
dx(Ωx)TD−1(Ωx)p(x) = kB

∫
dxxiΩ

T
ij(D

−1)jlΩlmxmp(x)

= kBΩTij(D
−1)jlΩlmcmi = kB Tr (ΩTD−1ΩC).

(30)
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Since the entropy production is invariant under coordinate transformations, we can use a more suitable coordinate
system. In particular, we choose a set of coordinates such that C = 1. In this set of coordinates, the entries of the
matrix Ωij correspond to the cycling frequencies in the coordinates space of the ith and jth coordinates [25]. Thus,
in the 2D case Ωr is given by

Ωr =

(
0 ω
−ω 0

)
(31)

Furthermore, in this coordinate system C[r,r] and Ωr commute, yielding

Π(2)
r = kBω

2 Tr (C[r,r]D
−1
[r,r]) (32)

Note, this expression is invariant under coordinate transformations.

SYSTEM SIZE AND SPATIAL AVERAGE

We determined the scaling of cycling frequencies for a range of system sizes (Fig. 5A). By properly rescaling both
axes (see Eq.(10)), we can collapse all data on a mastercurve, which is consistent with a power-law over at least two
decades (Fig. 5B). This analysis suggests a universal behavior, which is not dependent on the size of the system.
These results provides additional numerical evidence for a power law scaling.

To determine ensemble averages of the cycling frequencies in Fig.(3) and Fig.(4) we employ spatial averages. For
an infinite heterogeneous system, the ensemble average is equivalent to a spatial average. In a finite system, we need
to be careful when using spatial averages because of edge effects. We investigated this aspect in a 1D chain, for which
edge effects will be stronger than in higher dimensional systems. We performed a spatial average over all the different
beads at distance r in the system, where we excluded data from beads at distances < 10 from the edge of system.
Using this procedure, we find results that are consistent with those obtained with the ensemble average. (Fig. 6)

FIG. 5. Spatial scaling behavior of cycling frequencies. A) Scaling behavior of the frequency for different system sizes in the
1D chain (other parameters as in Fig. 3). B) Data collapse obtained by properly rescaling both axes.

FIG. 6. Comparison between spatial and ensemble averages of the cycling frequencies for a 1D chain of size N=1501 (other
parameters as in Fig. 3).


