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We study the low-frequency dynamics of periodically driven one-dimensional systems hosting
Floquet topological phases. We show, both analytically and numerically, in the low frequency
limit Ω → 0, the topological invariants of a chirally-symmetric driven system exhibit universal
fluctuations. While the topological invariants in this limit nearly vanish on average over a small
range of frequencies, we find that they follow a universal Gaussian distribution with a width that
scales as 1/

√
Ω. We explain this scaling based on a diffusive structure of the winding numbers of

the Floquet-Bloch evolution operator at low frequency. We also find that the maximum quasienergy
gap remains finite and scales as Ω2. Thus, we argue that the adiabatic limit of a Floquet topological
insulator is highly structured, with universal fluctuations persisting down to very low frequencies.

The behavior of a periodically driven system can
be qualitatively different from its equilibrium behavior.
Manifestations of such behavior in classical physics in-
clude resonances, dynamical stabilization of new steady
states, and the period-doubling approach to chaos [1–3].
In quantum systems, the effective Floquet dynamics of a
driven systems has been employed as a powerful way to
engineer designer Hamiltonians, e.g. by using laser se-
quences in cold atomic gases. In this way, novel phases
of matter have been proposed and realized [4–8].

More recently, it has been understood that a driven
system can also exhibit essentially non-equilibrium topo-
logical phases, dubbed Floquet topological phases [9–12].
Drive parameters, such as the frequency Ω or the shape
of the drive (“drive protocol”) have been proposed [13–
21] and used in the lab [22–25] to engineer a rich ar-
ray of topological phases not possible in equilibrium sys-
tems. The non-equilibrium dynamics at large frequen-
cies is relatively well understood, e.g. within rotating-
wave approximation, as a renormalization of the equi-
librium parameters of the system [26–30]. The low-
frequency regime, on the other hand, remains largely un-
explored [32]. This is the relevant regime in solid-state
systems driven by ac potentials [11]. It is also impor-
tant as a way to reduce unwanted heating in the sys-
tem [33–36]. At a more basic level, it relates to the adi-
abatic limit as Ω → 0. Numerical studies have reported
nonzero Floquet topological invariants as frequency is
lowered [15, 37–41]. This raises questions on the nature
of adiabatic limit in Floquet topological phases.

In this Letter, we study the low-frequency limit of one-
dimensional model driven systems that exhibit a rich Flo-
quet topological phase diagram [12, 15]. Assuming the
driven systems are chirally symmetric [41–43], we derive
analytical expressions for the Floquet topological invari-
ants and evaluate them numerically over several decades
of the drive frequency. We find that these topological in-
variants not only remain nonzero at low frequencies, but
increasingly fluctuate. While at any fixed frequency the
invariants are deterministic, over a range of frequencies
δΩ � Ω, the invariants distribute pseudorandomly. We

argue that this distribution is universal and in our models
is given by a Gaussian, whose width is σ(Ω) ∼ 1/

√
Ω. We

explain this universal behavior by revealing a diffusive
process in the evaluation of the invariants and confirm
our results numerically.

Specifically, we study one-dimensional driven systems
with periodic boundary conditions, with a Hamiltonian
of the form Ĥ =

∫
ĉ†khk ĉk

dk
2π , where k ∈ [−π, π] is

the crystal momentum, ĉk is a two-component spinor
field, and hk = dkxσx + dkyσy with dkx + idky ≡
dk a model-dependent function. For example, in
the Su-Schrieffer-Heeger (SSH) model [44, 45] dk =
2eik/2

(
w cos k2 + iδ sin k

2

)
, where w (δ) is the hopping

(modulation) amplitude. In the Kitaev model [45, 46],
after a suitable rotation in the Nambu space, one finds
dk = 2w cos k− µ+ i∆ sin k, where µ is the chemical po-
tential and ∆ is the nearest-neighbor pairing amplitude.

These Hamiltonians are particle-hole symmetric,
σzh

∗
−kσz = −hk, with eigenvalues ±|dk|. In equilibrium,

there are two topologically distinct phases: a topological
phase, for δ/w > 0 in the SSH and |µ| < 2|w| for Kitaev
model, and a trivial phase otherwise. These two phases
are distinguished on the lattice with open boundary con-
ditions by the presence of zero-energy bound states in the
topological phase. With periodic boundary conditions,
the phases are distinguished by an integer topological in-
variant ν = 0 or 1, equal to the winding number

ν =W[d] ≡ 1

2πi

∫ π

−π

∂

∂k
ln(dk)dk. (1)

For a multi-band system, e.g. the SSH-Kitaev [45, 47],
dk is matrix-valued and the topological invariant is found
by W[det d].

When the system is periodically driven, the full dy-
namics is obtained by solving the Floquet-Schrödinger
equation [hk(t) − i∂t]φ

±
k (t) = ±εkφ±k (t) (we are set-

ting ~ = 1) for the periodic steady states φsk(t) =
φsk(t + 2π/Ω), s = ±, with the quasienergy sεk, which
we take to be in the Floquet zone [−Ω/2,Ω/2]. The
Bloch evolution operator can then be written as Uk(t) =



2∑
s=± e

−isεktφsk(t)φs†k (0). The full-period evolution op-
erator Uk(2π/Ω) has eigenstates φsk(0) with eigenvalues
e−2sπiεk/Ω. Since the quasienergy is a modular quan-
tity, even a two-band model is characterized by two gaps
at Floquet zone center (ε\ = 0) and Floquet zone edge
(ε[ = Ω/2) [48]. Thus, for periodic boundary conditions
there are two independent topological invariants defined
for the quasienergy gaps at Floquet zone center, ν\, and
edge, ν[. For open boundary conditions, the correspond-
ing invariants are the number of midgap steady bound
states at Floquet zone center and edge [45].

To simplify our discussion, we take the drive protocol
to satisfy the chiral reflection symmetry, δ(t + π/Ω) =
δ(−t + π/Ω); then, the two topological invariants are
found [42, 45] from the half-period evolution operator

Uk(π/Ω) ≡
(
Ak Bk
Ck Dk

)
, as

ν\ =W[B] and ν[ =W[D]. (2)

In the static case, Dk is constant and Bk ∝ dk, thus one
finds ν[ = 0 and ν\ = ν as expected. For concreteness,
we present our results for the SSH model in the following
and for other models in the Supplemental Material [45].

At symmetry points ks = 0,±π, hks ∝ σx and
the half-period evolution operator takes simple forms,
U0(π/Ω) = e−i

2π
Ω wσx and Uπ(π/Ω) = ei

2π
Ω δ̄σx , where

δ̄ = (Ω/2π)
∫ 2π/Ω

0
δ(s)ds is the average hopping mod-

ulation through one drive cycle. The values D±π =
cos(2πδ̄/Ω), D0 = cos(2πw/Ω) and B±π = i sin(2πδ̄/Ω),
B0 = −i sin(2πw/Ω) can be used to anchor their winding.

To understand the changes in the winding number ν[

(ν\) we analyze the contour of Dk (Bk) in the complex
plane as frequency varies (see Fig. 1). At high enough fre-
quency the contour of Dk (Bk) is a loop with two crossing
points on the real (imaginary) axis at D±π and D0 (B±π
and B0); as frequency is lowered the loop twists and un-
twists, thus changing the number of crossing points on
the real (imaginary) axis via two processes: a pair of
crossings are “emitted” from D0 (B0) whenever D′0 = 0
(B′0 = 0), where the prime denotes ∂/∂k; on the other
hand, a pair of crossings are “absorbed” into D±π (B±π)
when D′±π = 0 (B′±π = 0). While the rates of these pro-
cesses depend on the drive protocol, they all scale with
1/Ω; thus the number of crossings generically grows as
1/Ω. As Ω is lowered, all crossings move back and forth
within the unit disk along the real (imaginary) axis at
a speed that scales with 1/Ω. When a crossing point of
Dk (Bk) passes through the origin, the winding ν[ (ν\)
changes. The inversion symmetry of the SSH model en-
sures that except D±π and D0 (B±π and B0), all other
crossings are doubled.

Denoting the momenta at crossing points with k◦c (Ω),
where ◦ = \, [, the total number of crossings is N◦ =
N◦+ + N◦−, where N [

± =
∑
c Θ(±Dk[c

ImD′
k[c

) and N \
± =∑

c Θ(±iBk\c ReB′
k[c

). The winding numbers, on the

FIG. 1. The topological invariant ν[ is the winding number of
the complex function Dk, k ∈ [−π, π) (left), computed from
the crossing points on the real axis. The inversion symmetry
of the SSH model yields a reflection symmetric contour around
the real axis, the solid (dashed) line designating the portion
corresponding to k ∈ [−π, 0] ([0, π]). As the frequency is
lowered, new crossing points are emitted from D0 when the
contour twists (top right) and absorbed into D±π when it
untwists (bottom right).

other hand, are given by ν◦ = 1
2 (N◦+ − N◦−). At any

given frequency, Ω, the values of N◦± may be computed
deterministically from the number of crossings emitted,
absorbed, and moved on the corresponding real or imagi-
nary axis. However, as Ω→ 0, these numbers grow in an
increasingly complex way; thus, over a frequency inter-
val δΩ � Ω the distribution of crossing points appears
random. We posit that this distribution can be mod-
eled by a universal stochastic process of emission, ab-
sorption, and motion of crossing points of Dk (Bk) [49].
In the low-frequency limit, our numerics show generically
that N◦± are equally distributed. Taking this to be true,
we may think of N◦± as the number of steps taken by
a one-dimensional random walker in opposite directions,
with 2ν◦ the distance from the starting point. Thus,
winding numbers are diffusive variables with a protocol-

dependent diffusion constant D◦ = 2Ω
√
〈N◦+2〉. Here,

〈· · · 〉 stands for the average in the stochastic model or,
equivalently, the average over the interval δΩ. The wind-
ing numbers acquire a Gaussian distribution with a width
σ◦(Ω) =

√
D◦/Ω. This is our main result.

Changes in the winding number are concomitant with
quasienergy gap closings. This is easy to see at symmetry
points ks, where, for our chirally symmetric protocols,
the full-period evolution operator is the square of the
half-period evolution operator. At these points, ν[ (ν\)
change by one when D0 and D±π (B0 and B±π) vanish,

respectively, at Ω[0 = 4w
2m−1 and Ω[π = 4δ̄

2m−1 (Ω\0 = 2w
m

and Ω\π = 2δ̄
m ) for integer m. Noting that quasienergies

at symmetry points are given by ε0 ≡ ±2w mod Ω and
επ ≡ ±2δ̄modΩ, it is easy to see they are equal to ε[ (ε\)
exactly at frequencies where ν[ (ν\) changes. Of course,
changes in ν[ (ν\) are also caused at any frequency Ω[∗
(Ω\∗) and non-symmetry momenta k[∗ ≡ k[c(Ω

[
∗) [k\∗ ≡

k\c(Ω
\
∗)], where Dk[∗

(Bk\∗) vanishes and the gap at ε[ (ε\)
closes. Due to inversion symmetry, the winding numbers
at these gap closings change by two. We note that the
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FIG. 2. (color online) (a) The quasienergy gap (top panels) and the topological invariant (bottom panels) at the Floquet
zone edge as a function of the frequency. The two-step drive protocols are critical (δ1/w = −0.5, δ2/w = 0, left), asymmetric
(δ1/w = −0.5, δ2/w = 0.495, center), and trivial (δ1/w = −0.5, δ2/w = −0.3, right). In all cases p1 = p2 = 0.5. The (orange)
markers indicate analytically calculated gap closings at the symmetric points ks = 0 (square), and ks = ±π (triangle) and

non-symmetric points k[c 6= ks (circle). (b) Probability distribution of ν[ for the critical protocol in (a) and frequency range
Ω/w ∈ (0.5, 1)× 10−3. The solid line is a Gaussian fit. (c) Statistics of crossing points and winding number for the three drive

protocols in (a). From top to bottom in each panel: the total number of crossing points, N [, the positively-oriented crossing

points N [
+, the ratio α[+ = N [

+/N
[, and the winding number |ν[| are calculated numerically at 65000 frequencies. At this

resolution, fluctuations in the winding numbers render their graphs random. The vertical dashed line in the center panel marks
twice the value of the asymmetry parameter. The insets show the probability distribution P (ν[) over the shaded range as in

(b). The solid line shows
√
D[/Ω with D[ = ||δ1| − |δ2||. (d) Standard deviation σ[(Ω) for various two-step drive protocols

found by a Gaussian fit to P (ν[). The horizontal (vertical) line at each point indicates the range of frequencies (fitting error).

The legend shows the values (δ1/w, δ2/w). The solid line is σ[ =
√
D[/Ω.

frequencies Ω[∗ and Ω\∗ depend on the drive protocol.

To proceed quantitatively, we choose a periodic two-
step drive protocol in the SSH model given by δ(t) = δ1
for 0 < t < 2πp1/Ω and δ2 for 2πp1/Ω < t < 2π/Ω. Here,
0 < p1 < 1 is the dimensionless fraction of the period
for the first step of the drive. This family of protocols
simplifies the numerical calculations, and allows us to
obtain both analytically exact and numerically reliable
results over a wide range of frequencies. Note that the
modulation is chiral symmetric. This is explicit if we take
the origin of time to be at πp1/Ω. Calculating the full-
period evolution operator, the quasienergies are given by

cos
2πεk

Ω
= cos

2πĒk
Ω

cos2 θk
2

+ cos
2πĔk

Ω
sin2 θk

2
, (3)

where the average and difference bands Ēk = p1|d1k| +
p2|d2k|, Ĕk = p1|d1k| − p2|d2k| with index a = 1, 2, indi-
cating δ = δa. Here, θk is the angle between the complex
variables d1k and d2k. Without loss of generality, we as-
sume |δ1| > |δ2|. Gap closings at ε◦ for k◦∗ 6= 0, π are
obtained when cos(2πĒk◦∗/Ω) = cos(2πĔk◦∗/Ω) = (−1)

◦
,

where (−1)
[

= −1 and (−1)
\

= 1. This is a resonant
condition leading to an implicit equation for Ω, which we
solve numerically. Furthermore, for |δ2/δ1|p2 < p1 < p2,

there exist k\∗ where Ĕk\∗ = 0; at these points, the gap at

ε\ closes for Ēk\∗/Ω
\
∗ ≡ 0 mod 1.

The winding numbers are found from

Dk = e−iθk/2

(
cos

πĒk
Ω

cos
θk
2

+ i cos
πĔk

Ω
sin

θk
2

)
(4)

and Bk = (d1k/|d1k|)B̃k,

B̃k = e−iθk/2

(
sin

πĒk
Ω

cos
θk
2

+ i sin
πĔk

Ω
sin

θk
2

)
. (5)

Since θπ = 0 or π and θ0 = 0, Dπ (B̃π) and D0 (B̃0) are
real. We noteW[B] =W[d1]+W[B̃], i.e. ν\ = ν1+W[B̃].

Focusing on ν[ for concreteness and using the explicit
forms of Dk, we find that the crossing points that con-
tribute to either N+ or N− are emitted when 2p1w/Ω
or 2p2w/Ω is an integer, and they are absorbed when
p1|δ1|/Ω or 2p2|δ2|/Ω is an integer. For p1 ≈ p2 and for
small enough frequency, we may assume the motion of
crossing points yields a nearly uniform distribution along
the real axis. Since the winding number varies by 2 only
when the crossing two points are on different halves of
the real axis, the diffusion constant may be obtained by
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FIG. 3. (color online) (a) Winding number, |ν[|, and the

ratio α[+ in a multi-step protocol as a function of the number
of steps, n. The two frequencies are Ω1/w = 1.09 × 10−3

and Ω2/w = 4.15 × 10−3, with the mean value δ̄/w = −0.4

and amplitude A/w = 0.1. (b) The root-mean-square, δν[,
averaged over n as a function frequency. The dashed line
corresponds to

√
D[/Ω, fitted with D[/w = 0.35.

D[ ≈ 2|p1(w − |δ1|)− p2(w − |δ2|)|. In the following, we
assume δ1 < 0 for simplicity.

Our analytical expressions for the two-step drive allow
for the exact determination of gap closings; however, in
general, quasienergy gaps and topological invariants can
only be obtained by numerical solutions. In the special
case of a symmetric drive, δ2 = −δ1 and p1 = p2, we can
calculate the topological invariants exactly: ν\ = 0, and
ν[ = −1 when b 2w

Ω − 1
2c is even and 0 otherwise.

For the numerical solutions, we consider three distinct
protocols: the asymmetric protocol, δ2 = −δ1 − % > 0,
which is a periodic switch between the equilibrium trivial
and the topological phases with the asymmetry parame-
ter %; the critical protocol, δ2 = 0, i.e. a periodic switch
between the equilibrium trivial and the critical point of
the system; and finally, the trivial protocol, δ1 < δ2 < 0,
such that the systems is in the equilibrium trivial phase
at all times. Our numerical results for ν[ are summarized
in Fig. 2; our results for ν\ are similar [45].

The quasienergy gaps ∆◦ = mink |εk − ε◦| exhibit self-
similar patterns, with peaks that scale as ∼ Ω2. We
have benchmarked our numerical calculation with the
exact analytical expressions for gap closings, shown on
the same plot; the agreement is extremely good. The
Ω2 scaling can be understood within adiabatic pertur-
bation theory [50, 51], where the frequency is used as a
perturbation parameter. The first-order correction to the
quasienergy is the Berry phase of the steady states, which
vanishes for our chirally symmetric protocols [51, 52].

The winding number ν[ fluctuates as frequency is
lowered with an increasing relative amplitude. For an
asymmetric protocol, as in Fig. 2(c) center panel, when
Ω > 2%, we observe the regular step-wise behavior as
in the symmetric protocol. However, when Ω < 2%,
the same fluctuating pattern sets in. We have carried
out a detailed analysis of ν[ over a wide range of low
frequencies. For each frequency Ω, we show N [, N [

+,

α[+ = N [
+/N

[, and ν[. Both N [, and N [
+ scale linearly

with 1/Ω, confirming our general arguments. The ratio
α[+ approaches 1/2 as the frequency decreases, indicating

the diffusive behavior familiar from a random-walk pro-
cess. Moreover, the range of |ν[| scales as ∼ 1/

√
Ω. For a

range of frequencies much lower than other energy scales
in the system, we have determine the probability P (ν[) of
finding ν[ in our numerical histogram. As shown, P (ν[)
follows a Gaussian distribution with a width that is given
by σ(ν[) =

√
D[/Ω over several decades of frequency,

confirming our general result.

To test our general arguments for the universality of
the fluctuations, we have studied other drive protocols
and other models, including a model with multiple bands.
These numerical studies support our results in all cases.
Details are found in the Supplemental Material [45]; here,
we present our results for a multi-step protocol in the
SSH model approximating δ(t) = δ̄+A cos(Ωt). The an-
alytical calculations become increasingly difficult as the
number of steps n in the drive increases; however, we can
still calculate the topological invariants numerically. A
typical sampling of our results are shown in Fig. 3. While
ν[ fluctuates both in magnitude and sign as n is varied,
the ratio α[+ ≈ 1/2, again indicating a diffusive process.
Collecting good statistics over a wide frequency range
quickly becomes too expensive. However, since the fluc-
tuations in the winding number result from the twisting
and untwisting of the contour Dk, we expect that vary-
ing the number of steps n should have a similar effect.
Indeed, as shown in Fig. 3(b), after averaging over n, the
root-mean-square δν[ ∼ 1/

√
Ω.

In conclusion, we have found universal fluctuations in
the topological invariants characterizing a Floquet topo-
logical phase. We explained these fluctuations by posit-
ing a pseudorandom distribution of crossing points of the
complex function whose winding number gives the topo-
logical invariant. This distribution follows from the diffu-
sive process of emission, absorption, and motion of cross-
ing points as frequency is lowered. Our results show that
the limit Ω→ 0 has a rich structure that is distinct from
the simple adiabatic limit: while the topological invariant
vanishes [53] on average, consistent with the adiabatic
limit, its fluctuations diverge. These fluctuation may be
observed in the noise spectra of relevant quantities such
as voltage noise [56], or by spectroscopic measures of the
number of Floquet edge modes as recently observed in a
photonic crystal emulator [25].

Universal fluctuations in Chern numbers have been
studied in quantized classically-chaotic and random ma-
trix theories [54, 55]. By contrast, we study periodically
driven systems, where topology is characterized not just
by Chern numbers of a static Hamiltonian, but by inde-
pendent winding numbers through a drive cycle. In this
context, it would be interesting to study if driven systems
with different symmetries (say, other than chiral symme-
try) can support other universality classes of fluctuations
of Floquet topological invariants.
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