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A common challenge faced in quantum physics is finding the extremal eigenvalues and eigenvectors
of a Hamiltonian matrix in a vector space so large that linear algebra operations on general vectors
are not possible. There are numerous efficient methods developed for this task, but they generally
fail when some control parameter in the Hamiltonian matrix exceeds some threshold value. In this
work we present a new technique called eigenvector continuation that can extend the reach of these
methods. The key insight is that while an eigenvector resides in a linear space with enormous
dimensions, the eigenvector trajectory generated by smooth changes of the Hamiltonian matrix is
well approximated by a very low-dimensional manifold. We prove this statement using analytic
function theory and propose an algorithm to solve for the extremal eigenvectors. We benchmark
the method using several examples from quantum many-body theory.

We address the problem of finding the extremal eigen-
values and eigenvectors of a Hamiltonian matrix that
is too large to store in computer memory. This prob-
lem occurs regularly in quantum many-body theory and
all existing methods either use Monte Carlo simulations,
diagrammatic expansions, variational methods or some
combination. While these methods can be quite efficient,
they can break down when one or more parameters in the
Hamiltonian exceed some tolerance threshold. In Monte
Carlo simulations the difficulty is caused by sign oscilla-
tions that cause positive and negative weights to cancel.
In diagrammatric expansions the problem is the diver-
gence of the series expansion, and in variational methods
the obstacle is capturing the details of the wave function
using a variational ansatz or truncated basis expansion.
In this letter we introduce a new variational technique
called eigenvector continuation that can be used to sal-
vage the most difficult cases.

In the mathematical literature, the terms eigenvector
continuation [1–3], subspace tracking [4], and successive
constraint method for subspace acceleration [5] refer to
the computation of smoothly-varying bases for invariant
subspaces of parameter-dependent matrices. Although
related, our approach is aimed at determining eigenval-
ues and eigenvectors in a vector space so large that lin-
ear algebra operations on general vectors are not possi-
ble. As a result, Krylov space methods as the Lanczos
algorithm [6, 7] are not applicable in their usual formula-
tion. Some examples of computational methods that can
tolerate extremely large-dimensional spaces are quantum
Monte Carlo simulations and many-body perturbation
theory. We assume that we have a computational method
that can perform a limited set of operations such as in-
ner products between eigenvectors of different Hamilto-
nian matrices and amplitudes of eigenvectors sandwich-

ing specific matrices such as a Hamiltonian matrix. In
order to obtain results using only this limited informa-
tion, we must be careful to maintain numerical accuracy
and robustness in the presence of collinearities among the
eigenvectors.

In the following we demonstrate that when a control
parameter in the Hamiltonian matrix is varied smoothly,
the extremal eigenvectors do not explore the large di-
mensionality of the linear space. Instead they trace out
trajectories with significant displacements in only a small
number of linearly-independent directions. We prove this
statement using the principles of analytic continuation.
Since the eigenvector trajectory is a low-dimensional
manifold embedded in a very large space, we can “learn”
the eigenvector trajectory using data where the eigen-
vector is computable and apply eigenvector continuation
to address problems where the computational method
breaks down.

Let us consider a finite-dimensional linear space and a
family of Hamiltonian matrices H(c) = H0 + cH1 where
H0 and H1 are Hermitian. Let |ψj(c)〉 denote the eigen-
vectors of H(c) with corresponding eigenvalues Ej(c).
Since H(c) is Hermitian for real c and thus diagonal-
izable, Ej(c) has no singularities on the real axis, and we
can define |ψj(c)〉 so that it also has no singularities on
the real axis. We now expand |ψj(c)〉 as a power series
about the point c = 0. The series coefficients for cn are

|ψ(n)
j (0)〉 /n!, where the superscript (n) denotes the nth

derivative. An analogous series expansion can also be ap-
plied to the eigenvalue Ej(c). These series converge for
all |c| < |z|, where z and its complex conjugate z̄ are the
closest singularities to c = 0 in the complex plane. In
the following we discuss perturbation theory, which can
be regarded as the calculation of these series expansions



2

in cases where the eigenvalues and eigenvectors of H0 are
known or readily computable.

In order to illuminate our discussion with a concrete
example, we consider a quantum Hamiltonian known
as the Bose-Hubbard model in three dimensions [8].
It describes a system of identical bosons on a three-
dimensional cubic lattice. The Hamiltonian has a term
proportional to t that controls the lattice hopping of each
boson, a term proportional to U that controls the pair-
wise interactions between bosons on the same site, and
a chemical potential µ. The full details of the model are
given in Supplementary Materials. We consider a sys-
tem of four bosons with µ = −6t on a 4 × 4 × 4 lattice.
We first try to use perturbation theory to compute the
ground state energy eigenvalue E0 in units of the hopping
parameter t. In panel a of Fig. 1 we show E0/t versus
interaction strength U/t. The red asterisks indicate the
exact energies. The lines (1 = red dashed, 2 = magenta
dotted, 3 = grey dashed-dotted, 4 = blue solid, 5 = black
long-dashed-dotted, 6 = orange long-dashed) denote the
first six orders for the expansion of E0/t as a power series
around U/t = 0. We see that perturbation theory fails
to converge when U/t is less than about −3.8.1 This is
caused by branch point singularities at nearby points in
the complex plane where the ground state eigenvalue is
merging with another eigenvalue.

The failure of perturbation theory is not surprising
considering that the physical character of the ground
state eigenvector changes significantly. It is a Bose gas for
U/t > 0, a weakly-bound state for −3.8 < U/t < 0, and
then a tightly-bound cluster for U/t < −3.8. Although
the eigenvector makes these changes in a linear space with
hundreds of thousands of dimensions (before symmetriza-
tion), the eigenvector traces out a path with significant
displacement in only a few independent directions. To
demonstrate this we compute the ground state eigen-
vectors at three sampling points, U/t = −5.0,−1.5, 2.0.
These three vectors span a three-dimensional subspace.
We project the Hamiltonian for general U/t onto this
subspace and find the lowest eigenvalue and eigenvec-
tor. This technique is an example of an approach we call
eigenvector continuation. In panel a of Fig. 1 the black
solid line shows E0/t computed using eigenvector con-
tinuation (EC) with the three sampling points shown as
black diamonds. The agreement with the exact energies
is quite good, and the same level of accuracy is found
when comparing the eigenvector computed using EC to
the exact eigenvector.

Eigenvector continuation can be used to “learn” sam-
pling data from the region −3.8 < U/t < 0 and extrapo-

1 From the first six orders of the expansion, the series might seem
to converge to the wrong value for U/t < −3.8. However the
series is divergent at higher orders.
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FIG. 1: Ground state energy versus coupling. In each
panel a and b we plot the ground state energy E0/t versus
coupling U/t for four bosons in the three-dimensional Bose-
Hubbard model on a 4 × 4 × 4 periodic lattice. The red as-
terisks are the exact energies. In panel a the lines (1 = red
dashed, 2 = magenta dotted, 3 = grey dashed-dotted, 4 =
blue solid, 5 = black long-dashed-dotted, 6 = orange long-
dashed) denote the first six orders of the expansion of E0/t
as a power series around the point U/t = 0. For comparison,
the black solid line shows E0/t computed using eigenvector
continuation (EC) with the three sampling points shown as
black diamonds. In panel b the black diamonds show the
five sampling points, and the lines (1 = red dashed, 2 = ma-
genta dotted, 3 = grey dashed-dotted, 4 = blue solid, 5 =
black long-dashed-dotted) denote the eigenvector continua-
tion (EC) results for E0/t when projecting onto 1, 2, 3, 4, or
5 vectors.

late to the regions U/t < −3.8 and U/t > 0. To demon-
strate this we sample the ground state eigenvectors at
five points, U/t = −2.0,−1.9,−1.8,−1.7,−1.6. The re-
sults are shown in panel b of Fig. 1. The red asterisks
are the exact energies. The black diamonds show the
five sampling points, and the lines (1 = red dashed, 2 =
magenta dotted, 3 = grey dashed-dotted, 4 = blue solid,
5 = black long-dashed-dotted) denote the EC results for
E0/t when projecting onto 1, 2, 3, 4, or 5 vectors. We see
that the method converges rapidly and is able to capture
the abrupt change in slope near U/t = −3.8.

Why eigenvector continuation works and how fast it
converges can be understood using analytic function the-
ory. We return back to the series expansion for |ψj(c)〉.



3

Although the series expansion about c = 0 fails to con-
verge for points |c| > |z|, we can define an analytic ex-
tension by constructing a new series about another point
c = w, where w is real and |w| < |z|. For this second se-

ries the coefficients of (c−w)n are |ψ(n)
j (w)〉 /n!. We can

use the original series to express each |ψ(n)
j (w)〉 in terms

of |ψ(m)
j (0)〉. In this way we can approximate |ψj(c)〉 to

arbitrary accuracy as a linear combination of the vectors

|ψ(n)
j (0)〉 in the region |c − w| < |z − w| centered at w.

Using this process of analytic continuation repeatedly, we
can reach any value of c and express any |ψj(c)〉 to arbi-
trary accuracy as a linear combination of a finite number

of vectors |ψ(n)
j (0)〉. The number of required vectors is

determined by the number of different expansion centers
needed in the analytic continuation and the rate of con-
vergence of each series expansion. This explains why the
trajectory traced out by |ψj(c)〉 moves in a small number
of linearly-independent directions.

The basic strategy of eigenvector continuation is to
“learn” the low-dimensional subspace that contains the
eigenvector trajectory |ψj(c)〉. We start with the lowest
eigenvalue and eigenvector in a given symmetry class. We
then sample several values c = ci with i = 1, · · · ,K and
compute the corresponding eigenvectors |ψj(ci)〉. The
sampling values ci are chosen in the domain where the
computational method of choice is accurate. The tar-
get value c = c�, where we want to determine Ej(c�)
and |ψj(c�)〉, will often lie in a region where direct cal-
culation is no longer feasible. We then compute the
inner products Ni′,i = 〈ψj(ci′)|ψj(ci)〉 and matrix ele-
ments Hi′,i = 〈ψj(ci′)|H(c�)|ψj(ci)〉 and solve the gen-
eralized eigenvalue problem. This consists of finding the
eigenvalues and eigenvectors of the K-dimensional ma-
trix N−1/2HN−1/2, where N−1/2 is the inverse square
root of the positive matrix N . For the lowest eigen-
value and eigenvector of each symmetry class, it suffices
to compute the lowest eigenvalue and eigenvector of the
K-dimensional matrix. We then proceed to the next-
lowest eigenvalue and eigenvector in the symmetry class
with the additional constraint that it is orthogonal to
the lowest eigenvector. Continuing on in this manner,
any eigenvalue and eigenvector can in principle be calcu-
lated. In cases where there are singularities near the real
axis, the convergence of the method can be accelerated
by including several eigenvectors |ψj(ci)〉 , |ψj′(ci)〉 , · · ·
for each ci. This procedure and the connection to Rie-
mann sheets at branch point singularities is discussed in
Supplementary Materials.

We now test the eigenvector continuation in a many-
body quantum Monte Carlo calculation. We consider
lattice simulations of pure neutron matter at leading
order in chiral effective field theory. Instead of using
the lattice actions used in recent work [9, 10], we pur-
posely use the computationally difficult action described
in Ref. [11]. Due to severe sign oscillations, it is not

possible to do accurate simulations for more than four
neutrons. Even extrapolation methods such as those dis-
cussed in Ref. [12, 13] provide no significant improve-
ment due to the rapid onset of sign cancellations. The
leading-order action consists of the free neutron action,
a single-site contact interaction between neutrons of op-
posite spins, and the two-body potential generated from
the exchange of a pion. This one-pion exchange potential
is proportional to g2A, the square of the axial-vector cou-
pling constant. In contrast with the lattice actions used
in Ref. [9, 10], the short distance behavior of this one-
pion exchange potential potential is not softened and,
as a result, causes severe sign oscillations in the Monte
Carlo simulations. We will consider the one-parameter
family of lattice Hamiltonians H(g2A) which results from
varying g2A. The desired target value of g2A is the value
1.66 used in Ref. [11]. Details of the lattice action are
presented in Supplementary Materials.

The systems we calculate are the ground state energies
of six and fourteen neutrons on a 4 × 4 × 4 lattice with
spatial lattice spacing 1.97 fm and time lattice spacing
1.32 fm. We are using natural units where ~ and the
speed of light are set to 1. We use projection Monte Carlo
with auxiliary fields to calculate the ground state energy.
Details of the simulation are presented in Supplementary
Materials, and some reviews of the lattice methods can
be found in Ref. [11, 14]. We first attempt to compute the
ground state energies by direct calculation. The errors
are quite large due to sign oscillations. For six neutrons
the ground state energy is E0 = 12(+3

−4) MeV, and for

fourteen neutrons E0 = 42(+7
−15) MeV.

Next we use eigenvector continuation for the same sys-
tems with sampling data g2A = c1, c2, c3, where c1 = 0.25,
c2 = 0.60, and c3 = 0.95. We use Monte Carlo sim-
ulations to calculate the ground state eigenvectors for
c1, c2, c3. In Table I we show the EC results using just
one of the three vectors, two of the vectors, or all three
vectors. The error bars are estimates of the stochastic
error and extrapolation error when taking the limit of
infinite projection time. For comparison we also show
the direct calculation results. We see that the EC re-
sults converge quite rapidly with the number of vectors
included. The results are also consistent with the di-
rect calculation results, though with an error bar that is
smaller by an order of magnitude.

Our calculations demonstrate the potential value of
eigenvector continuation for quantum Monte Carlo simu-
lations. One can use eigenvector continuation for interac-
tions that produce sign oscillations or noisy Monte Carlo
simulations. Eigenvector continuation can also be used
to significantly extend the convergence of perturbation
theory, and this will be demonstrated in a forthcoming
publication. While eigenvector continuation would not
improve a Lanczos calculation using a truncated basis
with fixed dimensions, eigenvector continuation can be
used to extend the reach of techniques that remove ba-
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g2A values E0(N = 6) [MeV] E0(N = 14) [MeV]

c1 14.0(4) 48.8(6)

c2 13.7(4) 48.5(7)

c3 13.8(6) 48.8(8)

c2, c3 13.7(4) 48.4(7)

c3, c1 13.8(4) 48.8(6)

c1, c2 13.7(4) 48.4(7)

c1, c2, c3 13.7(4) 48.4(7)

direct calculation 12(+3
−4) 42(+7

−15)

TABLE I: Eigenvector continuation results for the ground
state energy for six and fourteen neutrons using sampling data
g2A = c1, c2, c3, where c1 = 0.25, c2 = 0.60, and c3 = 0.95. For
comparison we also show the direct calculation results.

sis truncation errors[15]. The method is expected to be
particularly useful for bound state calculations. For con-
tinuum states one should consider all low-lying contin-
uum states in a finite volume together rather than pick-
ing out one continuum eigenvector at a time. This can be
done using a framework such as the adiabatic projection
method [16, 17], which constructs continuum states for
all possible relative displacements between clusters.

If the inner products Ni′,i and matrix elements Hi′,i

can be computed with sufficient accuracy, then any eigen-
vector problem can be solved in this manner. However,
there are practical limits to the accuracy one can achieve
for any computational method, and this sets limits on
how far eigenvector continuation can be pushed. In fu-
ture work we will discuss machine learning techniques for
optimizing the eigenvector continuation process [18–20].
While we have emphasized the use of eigenvector contin-
uation to perform extrapolations in the control parame-
ter c, there are also fascinating quantum systems where
interpolation is the most interesting question. One exam-
ple is the phenomenon known as “BCS-BEC crossover”
in degenerate fermionic systems at large scattering length
[21]. There are variational wave functions that work very
well for the weak-coupling BCS side, and other varia-
tional wave functions that accurately describe the strong-
coupling BEC side. Our results here suggest that the
crossover transition can be well represented using linear
combinations of the different variational wave functions.
In the same manner, eigenvector continuation could also
be used to study shape phase transitions in atomic nuclei
[22].2

We look forward to seeing future applications of eigen-
vector continuation when paired with computational
methods such as quantum Monte Carlo simulations,
many-body perturbation theory, and variational meth-
ods. We anticipate that eigenvector continuation can

2 We are grateful for discussions on this topic with Mark Caprio.

serve as a new theoretical tool to study quantum corre-
lations, BEC-BCS crossover, shape transitions, entangle-
ment, geometric phases, and quantum phase transitions
at finite volume.
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