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We make the case for studying the complexity of approximately simulating (sampling) quantum
systems for reasons beyond that of quantum computational supremacy, such as diagnosing phase
transitions. We consider the sampling complexity as a function of time t due to evolution generated
by spatially local quadratic bosonic Hamiltonians. We obtain an upper bound on the scaling of t with
the number of bosons n for which approximate sampling is classically efficient. We also obtain a lower
bound on the scaling of t with n for which any instance of the boson sampling problem reduces to
this problem and hence implies that the problem is hard, assuming the conjectures of Aaronson and
Arkhipov [Proc. 43rd Annu. ACM Symp. Theory Comput. STOC ’11]. This establishes a dynamical
phase transition in sampling complexity. Further, we show that systems in the Anderson-localized
phase are always easy to sample from at arbitrarily long times. We view these results in the light
of classifying phases of physical systems based on parameters in the Hamiltonian. In doing so, we
combine ideas from mathematical physics and computational complexity to gain insight into the
behavior of condensed matter, atomic, molecular and optical systems.

In the quest towards building scalable and fault-
tolerant quantum computers, demonstration of a quan-
tum speedup over the best possible classical computers is
an important milestone and is termed quantum compu-
tational supremacy [1]. There are several candidates for
tasks where such a speedup could be demonstrated [2–
13], where the problem is to simulate a quantum system
in the sense of approximate sampling. However, there has
also been some debate about the required system size be-
fore one can claim quantum computational supremacy,
due to improved simulation techniques and algorithms
[14–16]. In this Letter, we consider the impact of the
field of quantum computational supremacy on other ar-
eas of physics and show that studying the complexity of
simulating physical systems is useful for understanding
phase transitions.

Here we consider the classical complexity of approx-
imate sampling, referred to as “sampling complexity”.
This is the task of producing samples from a distribution
close to the probability distribution occurring in a quan-
tum system upon measurement in a standard basis. This
task is a good notion of what it means to simulate physics
on a classical computer since it captures how well a com-
puter can mimic an experiment in which one can measure
the output at several sites. When we consider sampling
complexity as a function of system parameters, the sys-
tem can be classified as easy in some regimes and hard in
some others. Since the designations “easy” and “hard”
are exhaustive and there is no smooth way to go from
one regime to another, we posit that this transition from
easy to hard happens abruptly, a phenomenon very rem-
iniscent of phase transitions. Just like order parameters
are zero on one side of a phase transition and nonzero
on another, sampling complexity is different on either
side of the transition, and can be used to draw phase

boundaries as a function of time and other system pa-
rameters. These boundaries can be different from those
drawn by more conventional order parameters, signifying
new physics in otherwise well-studied systems. Indeed,
phase transitions in average-case complexity have been
studied both in the classical [17] and quantum regime
[18].

In this Letter, we show that transitions in sampling
complexity [19] are indicative of physical transitions. We
consider a system of n bosons hopping from one site to
another on a lattice of m sites and study the sampling
complexity as a function of time for an initial product
state. We show that it goes from easy to hard as the scal-
ing of evolution time t with the number of bosons n in-
creases, thereby exhibiting a dynamical phase transition
[20, 21]. We find that the timescale at which the com-
plexity changes is the timescale when interference effects
start becoming relevant. We conjecture that in general,
this is linked to the Ehrenfest timescale at which quan-
tum effects in a system become considerable [22]. We
also show that systems in the Anderson-localized phase
are always easy to simulate. We use the Lieb-Robinson
bound [23] as an ingredient in our proof of easiness.

Setup.— The model consists of free bosons hopping
on a lattice in d dimensions (denoted d-D) with sites la-
beled by indices i, j. Our results in this paper can be
applied to linear optics as well, with the bosonic sites
being replaced by photonic modes. The Hamiltonian is
given by H =

∑m
i,j=1 Jij(t)a

†
iaj , where a†i is the creation

operator of a boson at the i’th site. J(t), which can be
time-dependent in general, is an m ×m Hermitian ma-
trix that encodes the connectivity of the lattice. One
way to show hardness in the boson sampling proposal by
Aaronson and Arkhipov (AA) [5] is to generate any linear
optical unitary U acting on the bosonic sites, in partic-
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FIG. 1 (Color online). An example of the initial state in d = 2
dimensions. Here m = 96, n = 4, β = 3 and c1 = 3/2. The
black circles represent sites with a single boson. The cyan
circles represent the ancillas.

ular, Haar-random unitaries. Any U can be generated
through a free boson Hamiltonian by taking H = i logU
and evolving it for unit time. However, this Hamiltonian
can require arbitrarily long-range hops on the lattice in
general. Since such long-ranged Hamiltonians may not
be realistic, we consider the sampling complexity of a
bosonic Hamiltonian with nearest-neighbor hops. Jij is
nonzero only if i = j or i and j label adjacent sites. We
further restrict Jij to satisfy |Jij | ≤ 1 in order to set an
energy scale. Our proofs remain valid even if we allow
the diagonal terms Jii to be unbounded.

One can efficiently solve the equations of motion
iȧi
†(t) = [a†i (t), H(t)] on a classical computer to obtain

a†i (t) =
∑
k a
†
k(0)Rki(t) for some transformation matrix

R. From here onward, we shall take R(t) to be the input
to the problem, since it can be determined from the input
Hamiltonian H and time t in time poly(m, log t).

The m sites in the problem are numbered from 1 to
m, and together with n ancilla sites, are arranged in a
lattice of side length (m + n)1/d in d dimensions. The
initial state has n bosons equally spaced in the lattice as
shown in Fig. 1. We take m = c1n

β , where β controls the
sparsity of occupied sites in the lattice and can be set to
5 as required for the hardness of boson sampling [5]. The
minimum spacing between any two bosons in the initial

state is 2L =
(
m+n
n

)1/d
> c

1/d
1 n

β−1
d . The quantity L is

an important length scale in the problem. The ancillas
in the lattice, marked in cyan, are not counted as part
of the m sites and are present in order to accelerate the
time required to construct an arbitrary unitary, which is
useful for the hardness result. Their presence does not
change the scaling of quantities like L with n.

The input states are described by vectors of the form
r = (r1, . . . , rm), specifying the number of bosons on each
site, so that r1 + . . . rm = n. Measurement in the boson
number basis defines a distribution DU , which we aim to
sample from. The probability of finding an output state

s = (s1, s2, . . . , sm) is given by

Pr
DU

[s] =
1

r!s!
|Per(A)|2, (1)

where r! := r1! . . . rm! (with s! defined similarly), An×n
is a matrix formed by taking si copies of the i’th column
and rj copies of the j’th row of R in any order, and
Per(A) denotes the permanent of A (see Refs. [24, 25] for
details).

For the particular choice of initial states described in
Fig. 1, the task is to sample from a distribution that is
close to DU in variation distance when given a description
of the unitary R(t). We now formalize the notion of
efficient sampling.

Definition 1. Efficient sampler: An efficient sampler is
a classical randomized algorithm that takes as input the
unitary Rij and outputs a sample s from a distribution
DO such that the variation distance between the distribu-
tions ε = ‖DO − DU‖ ≤ O( 1

poly(n) ), in runtime poly(n)

(see note [28]).

We call the sampling problem easy if there exists an
efficient sampler for the problem in the stated regime.
Conversely, the problem is hard if there cannot be an ef-
ficient sampler. Since a negative statement such as the
inexistence of an algorithm is difficult to prove, our prac-
tical definition of hardness of a sampling problem is if it
is at least as hard as boson sampling. This enables us to
use the results of AA [5] to claim the hardness of sam-
pling in some regimes. In doing so, our hardness results
ultimately rely on the truth of AA’s conjectures. One of
these conjectures concerns the hardness of additively ap-
proximating |Per(G)|2 for Gaussian-random G with high
probability (for which AA give reasonable evidence). The
second, more widely believed conjecture is that the poly-
nomial hierarchy, an infinite tower of complexity classes,
does not “collapse”, i.e. is truly infinite.

We restrict our attention to two special cases where
we can show the existence of an efficient sampling algo-
rithm: i) when the system evolves for a time smaller than
the system timescale L/v (where v is the Lieb-Robinson
velocity of information spreading in the lattice, defined
more precisely in Eq. (2)), and ii) when there is An-
derson localization in the system [29]. These two cases
correspond to a promise on the input unitary R. We now
state our main results.

Theorem 1.A (Easiness of simulation at short times).
For β > 1 and for all dimensions d, the sampling problem
is easy for all t ≤ 0.9L/v, i.e. ∀t ≤ c2n

(β−1)/d for some
constant c2.

The intuition behind this Theorem is that when the
time is smaller than the Lieb-Robinson timescale of parti-
cle interference L/v, the dynamics is approximately clas-
sical (in the sense that the particles are distinguishable).
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An important technical achievement of this paper is
to prove rigorously that this intuition is correct. This
is done in Lemma 3 by showing that the approximation
works.

Theorem 1.B (Hardness of simulation at longer times).
(based on Theorem 3 of Ref. [5]) When t = Ω(n1+β/d)),
the sampling problem is hard in general.

For this result, we show that we can apply any unitary
R after the stated time. Therefore, if an efficient sampler
exists for this problem, then we have an efficient boson
sampler, which cannot exist by our assumption.

The result for the case of Anderson localization comes
out as a corollary from Theorem 1.A:

Corollary 2 (Easiness of Anderson-localized systems).
For Anderson-localized systems in any dimension d, the
sampling problem is easy for all times.

The easiness of sampling for Anderson-localized sys-
tems is analogous to results showing efficient simulation
of localized systems according to various definitions [30–
34].

Easiness at short times.— In this section, we prove
Theorem 1.A and Corollary 2. First, let us examine the
promise we have on the unitary R in both cases. We use
the Lieb-Robinson bound [23] on the speed of information
propagation in a system. Applying the bound to our
Hamiltonian, we get

|[ai(t), a†j(0)]| = |Rij(t)| ≤ min

(
1, exp

(
vt− `ij

ξ

))
,

(2)

where `ij is the distance between two sites i and j, v is the
upper bound to the velocity of information propagation
called the Lieb-Robinson velocity and ξ is a length scale).
Note that the results from Ref. [35] do not apply since we
have free bosons here and we work in the single-particle
subspace. The Lieb-Robinson velocity is at most 4(1 +
2de) [36] when |Jij | ≤ 1 and ξ = 1.

When the Hamiltonian is Anderson-localized, the uni-
tary R satisfies the following promise at all times [37]:

|Rij | ≤ exp

(
−`ij
ξ

)
. (3)

Here, ξ is the maximum localization length among all
eigenvectors. Eq. (3) can be viewed as a consequence of a
Lieb-Robinson bound with zero velocity [38]. On account
of the zero-velocity Lieb-Robinson bound, all results for
the time-dependent case can be ported to the Anderson
localized case, setting v = 0.

We give an algorithm that efficiently samples from
the output distribution for short times t < 0.9L

v =

O(n(β−1)/d), given the promise in Eq. (2). The algorithm
outputs a sample from a distribution DDP , obtained by

assuming that the bosons are distinguishable particles,
ignoring the effects of interference. The algorithm is de-
scribed in more detail in Ref. [25].

Analysis.— We prove the correctness of the algorithm
by showing that the variation distance between the dis-
tributions is upper bounded by an inverse exponential in
n. When the bosons are distinguishable, their dynamics
is given by a Markov process, described by the matrix
Pkl = |R(t)|2kl. The probability of getting an outcome s
is given by

Pr
DDP

[s] =
∑
σ

1

s!
Pin1,outσ(1)Pin2,outσ(2) . . .Pinn,outσ(n)

, (4)

where the sum is over all permutations σ mapping the
input bosons to the output ones. In the above equations,
ini is the site index of the i’th boson in nondecreasing
order in the input and out is defined similarly at the
output (see Ref. [25] for an example). We now state a
result on how close DDP is to the true distribution DU .

Lemma 3. When β > 1 and t ≤ 0.9L/v, the variation
distance satisfies ‖DDP − DU‖ = O(exp[2vt−Lξ + 2(d −
1) logL]).

This Lemma makes intuitive sense: because of the
Lieb-Robinson bound Eq. (2) and the fact that the ini-
tially occupied sites are separated by a minimum distance
Θ(L) from each other, it takes a time t = Θ(L/v) for the
bosons to start interfering considerably. Therefore, the
classical and quantum distributions agree exponentially
closely in L when t ≤ 0.9L/v. For a proof of Lemma
3, see Ref. [25]. Assuming this Lemma, we now show
Theorem 1.A.

Proof of Theorem 1.A. Lemma 3 shows that the algo-
rithm samples from a distribution with exponentially
small error in n, since L = Θ(n(β−1)/d). To complete the
proof of Theorem 1.A, we need to show that the runtime
of the algorithm is polynomial in n. This is true because
the corresponding Markov process of n distinguishable
bosons walking on m sites for one step is efficiently simu-
lable: for each of the n particles, we select one among the
m sites to walk to, based on the matrix elements of P.
This takes time O(n ·poly(m)) = O(poly(n)) to simulate
on a classical computer.

Hardness at longer times.— If we allow the system to
evolve for a longer amount of time, we can use the time-
dependent control to effect any arbitrary unitary and im-
plement any boson sampling instance in the system. We
can perform phase gates on a site k by setting Jkk to
be nonzero for a particular time, with the hopping terms
and other diagonal terms set to zero. We can apply a
nontrivial two-site gate between adjacent sites, for ex-
ample the balanced beamsplitter unitary on the sites 1

and 2, U = 1√
2

(
1 −1
1 1

)
, by setting H = −i(a†1a2−a1a

†
2)
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FIG. 2 (Color online). Complexity phase diagram of free
bosons, illustrating that sampling complexity can delineate
boundaries of a physical system as a function of system pa-
rameters, including time. Our results indicate that β−1

d
≤ c ≤

β+d
d

, where c is the transition point for the scaling exponent
of t with n.

for time t = π
4 . One can also apply arbitrary unitaries

using arbitrary on-site control Jii(t) and fixed, time-
independent nearest-neighbor hopping Jij(t) = 1.

Using the constructions in Refs. [39, 40], we can ef-
fect any arbitrary m × m unitary on the m sites with
O(m2) depth from a nontrivial beamsplitter and arbi-
trary single-site phase gates. A construction of AA that
employs ancillas to obtain the desired final state rather
than applying the full unitary on all the sites can be used
to achieve a depth O(nm1/d). Each of the n columns
of the unitary are implemented in time O(m1/d), which
corresponds to the timescale set by the Lieb-Robinson
velocity and the distance between the furthest two sites
in the system (see note [41]).

Proof of Theorem 1.B. From the above, when t =

Ω(n1+
β
d ), we see that we can effect any arbitrary unitary.

This implies that an efficient sampler for this regime can
also be used as an efficient boson sampler, which is widely
believed not to exist because of AA’s results [5].

Outlook.— We have defined the sampling problem for
local Hamiltonian dynamics and given upper and lower
bounds for the scaling of time t(n) with the number of
bosons n for which the problem is efficiently simulable or
hard to classically simulate, respectively. Our results are
captured in Fig. 2 that illustrates the complexity phase
diagram of the system. For time-independent systems,
we observe that boson sampling is classically easy for all
times if the system is Anderson-localized. In a future
work [42], we show that there is a class of static, local
Hamiltonians that generate a hard-to-sample output dis-
tribution at some time that is not formally infinity. This
means that sampling complexity distinguishes Anderson-
localized and delocalized systems, which makes it similar
to an order parameter that distinguishes different phases.

The case with nonzero Lieb-Robinson velocity [Eq. (2)]
shows two regimes of the scaling of t with n where sam-
pling is provably easy/hard. We have shown that sam-

pling is easy when t ≤ teasy = Θ(n
β−1
d ) and hard when

t ≥ thard = Θ(n1+
β
d ). Since our definitions of easi-

ness and hardness are exhaustive, we argue that there
must exist a constant c such that sampling is efficient for
t < Θ(nc) and hard otherwise, illustrating a dynamical
phase transition. Our proof implies that c ∈ [β−1d , β+dd ]

and we show in future work [42] that the transition is
sharp (see note [43]). The transition is between two
regimes, one for short times in which the system’s dy-
namics is essentially indistinguishable from classical dy-
namics; and the other in which quantum mechanical ef-
fects dominate to such an extent as to forbid an efficient
classical simulation.

This result may be viewed as a generalization of a sim-
ilar result in Ref. [44], where it was shown that exact
boson sampling for depth-4 circuits is hard. The results
there are not directly comparable to ours, since Ref. [44]
assumes β = 1, whereas our results need β > 1 (easiness)
and β ≥ 2 or 5 (hardness). The reason we get easiness
even after polynomial time is that we deal with approxi-
mate sampling, a less stringent notion of simulation. In
addition, adapting the hardness proof of Ref. [44] into
our setup, we obtain that the system is hard to exactly

sample from at timescale Ω(8L/v) = Ω(n
β−1
d ) [42], par-

tially answering what happens in the subregion with the
question mark in Fig. 2.

Recent studies [22, 45–47] have also studied transi-
tions based on time-dependent features of the out-of-
time-ordered correlator. This raises the question of the
connection between sampling complexity and scrambling
time [48] in quantum many-body systems [49] and fast
scramblers like the Sachdev-Ye-Kitaev [45, 50–53] mod-
els, and black holes [54–57], where one can explore the
connection to recent conjectures on complexity in the
dual CFT [57–59]. Further, it would be interesting to
study sampling complexity in various other physical set-
tings [60], like systems with topological or many-body-
localized phases and systems in their ground state to ex-
plore the connection with Hamiltonian complexity.

We therefore propose another motivation for consid-
ering sampling complexity beyond the field of quantum
computational supremacy: complexity provides a natu-
ral way to classify phases of matter that is complemen-
tary to traditional approaches based on symmetries and
topology. This is akin to how the study of entanglement
in many-body physics has helped us understand phases
of matter [61, 62] and characterize thermalization and
localization [63, 64].

Coming to experimental implementations, platforms
such as ultracold atoms in optical lattices [65, 66] and
superconducting circuits [67, 68] are ideal for experimen-
tally studying the transition by comparing the distribu-
tion sampled by the algorithm and the experimental dis-
tribution. The ingredients required, which have been re-
alized in several groups [69–74], are: 1. Preparation of the
initial state [75, 76] of the type shown in Fig. 1 (see note
[77]). 2. Evolution under a Hamiltonian with either arbi-
trary time-dependent nearest-neighbor hopping strength
or fixed nearest-neighbor hopping strength Jij(t) = 1 to-
gether with arbitrary time-dependent on-site potential
Jii(t) [75, 78], and 3. Single-site resolved measurement of
occupation number of the sites [70, 71]. Cold atoms in
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quantum gas microscopes can be controlled at the sin-
gle site level, enabling all three ingredients above. To
maintain integrability, we can turn off the Hubbard in-
teraction for the bosonic atoms by tuning to a Feshbach
resonance [79–82].

New architectures like optical tweezers [83] are also
promising since they allow for deterministic creation of
desired initial states and feature tunable interactions in
time [84, 85]. Similarly, superconducting circuits have
been proposed for quantum simulation of quantum walks
[86] and the Bose-Hubbard model [87–89]. The gmon
qubit architecture, which was used in Ref. [89], naturally
allows for time-dependent variation of coupling strengths
[90], and raises the prospect of an experimental study of
the transition.
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