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We demonstrate a density-dependent gauge field, induced by atomic interactions, for quantum
gases. The gauge field results from the synchronous coupling between the interactions and micro-
motion of the atoms in a modulated two-dimensional optical lattice. As a first step, we show that
a coherent shaking of the lattice in two directions can couple the momentum and interactions of
atoms and break the four-fold symmetry of the lattice. We then create a full interaction-induced
gauge field by modulating the interaction strength in synchrony with the lattice shaking. When
a condensate is loaded into this shaken lattice, the gauge field acts to preferentially prepare the
system in different quasimomentum ground states depending on the modulation phase. We envision
that these interaction-induced fields, created by fine control of micromotion, will provide a stepping
stone to model new quantum phenomena within and beyond condensed matter physics.

Synthesizing gauge fields for cold atoms opens the door
to investigate novel quantum phenomena associated with
charged particles in an electromagnetic field [1, 2]; ex-
amples include quantum Hall effects, topological matter
and anyonic excitations. Many experimental approaches
have been developed in the past years to introduce gauge
fields, including rapidly rotating gases [3–5], Raman tran-
sitions [6, 7], laser-assisted tunneling [8, 9], and lattice
shaking [10, 11].

As charged particles in motion also generate electro-
magnetic fields, a complete simulation of the particle-
field system should include the feedback of the matter to
the gauge field [12]. Such a dynamical gauge field would
enable simulation of important models in condensed mat-
ter [13–15] and in high energy physics, as in Yang-Mills
theories [16]. Many mechanisms have been proposed for
introducing dynamical gauge fields in quantum gases [17–
22], opening exciting directions for cold atom research.

On the way to dynamical fields, there is a great deal
of interest in generating density-dependent (equivalently,
interaction-induced) gauge fields in which the effective
field depends on the arrangement of atoms [2]. For ex-
ample, such a field can be used to study new phase transi-
tions [23, 24] and one-dimensional particles with anyonic
statistics [23, 25–27]. Proposals have suggested gener-
ating density-dependent gauge fields using light-matter
interactions [28, 29], lattice modulation [23, 25–27], or
interaction strength modulation [24]. Experimental real-
ization, however, remains elusive.

Lattice shaking has recently emerged as a promising
experimental tool for generating gauge potentials in cold
atom systems [30], enabling exciting developments in-
cluding topological bands [31–33]. In our recent work,
lattice modulation at a frequency near-detuned to an
inter-band transition induces a quantum phase transi-
tion in Bose-Einstein condensates, resulting in domain
formation [11], roton excitations [34], and critical dynam-
ics that are both universal [35] and coherent [36]. In this
lattice shaking scheme, the superfluid remains long lived
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FIG. 1. Atoms in a two-dimensional shaken lattice. (a) A 2D,
square lattice (orange surface) is shaken by inducing periodic
displacements δx and δy along the x− and y−axes respec-
tively (arrows) with equal amplitude s at frequency ω ≡ 2π/τ ,
shaking period τ and relative phase θs. (b) Shaking above
the critical amplitude s > sc results in a single particle dis-
persion with four degenerate minima in the ground band at
q = (+q∗,+q∗), (−q∗,+q∗), (−q∗,−q∗) and (+q∗,−q∗), de-
noted respectively by red, black, blue, and white dots. (c)
The shaking phase θs controls the polarization of the lattice
displacement. The polarization does not affect the single par-
ticle dispersion shown in (b).

and the atomic interactions play an important role to
establish the ordering of superfluid domains.

In this paper, we experimentally demonstrate an
interaction-induced synthetic gauge potential in a Bose-
Einstein condensate. The gauge potential A(ρ) appears
as the substitution,

q→ q−A(ρ)/h̄ (1)

in the Hamiltonian, linking its dependence on the mo-
mentum, represented by the wavevector q = (qx, qy),
with ρ, the density coarse-grained over one unit cell.
Equivalently, one can view the interaction-induced field
in a tight-binding model as an imaginary part of the tun-
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neling which depends on the occupation number opera-
tors N̂k and N̂k+1 of the tunnel coupled sites,

J → J + iJ ′
(
N̂k + N̂k+1

)
, (2)

where J is the tunneling energy without the field and J ′

encodes the strength of the density-dependent field [37].
To create this density-dependent gauge field we ex-

ploit the micromotion of atoms in a shaken 2D square
optical lattice in combination with periodically modu-
lated interaction strength. For atoms condensed in a two-
dimensional momentum state q, this combination yields
a mean-field energy shift,

Eq = ηqρg0, (3)

where g0 = g(t) is the period-average of the interac-
tion strength g(t) = 4πh̄2a(t)/m, a(t) is the scattering
length, m is the atomic mass, and 2πh̄ is Planck’s con-
stant. The dimensionless interaction factor ηq accounts
for the coupling between the micromotion and atomic in-
teractions, as detailed below. A gauge potential in the
form of Eq. (1) requires ηq to be linear in q.

We perform the experiment in two stages. In the
first stage we show the effect of micromotion on in-
teractions by tuning the relative phase θs between the
lattice shaking in the x− and y−directions while keep-
ing the scattering length stationary. The micromotion
raises the time-averaged interaction energy along the di-
rection of shaking and can break the four-fold symme-
try of the dispersion. In the second stage we generate a
density-dependent gauge field by modulating the scatter-
ing length with a phase θg relative to the lattice shaking.
This scheme creates a gauge field with A ∼ eΘρg0, where
eΘ is a unit vector in the direction Θ ≡ θg−θs/2. In both
stages we test for the predicted effects via their influence
on the phase transition in the shaken lattice.

Our experiments utilize disk-shaped Bose-Einstein
condensates of cesium atoms prepared in a 2D, square
optical lattice. The lattice depths along both directions
are equal and small enough to maintain superfluidity of
the gas. The lattice can then be shaken with identi-
cal peak-to-peak amplitudes s and angular frequencies ω
along both axes, see Fig. 1(a). The shaking frequency is
chosen to be slightly higher than the excitation gap at
zero momentum in the lattice [11]. See supplement for
details [37].

When the shaking amplitude s exceeds a critical value
sc, the single particle dispersion Ekin develops four min-
ima at momenta q = (±q∗,±q∗) and (±q∗,∓q∗), where
q∗ is controlled by s, see Fig. 1(b). We calculate the ef-
fective dispersion of this periodically-modulated system
using Floquet theory [37]. The four-fold degeneracy is
the result of the D4 symmetry of the lattice, a 2D gener-
alization of previous experiments in 1D [11, 34–36]. Sim-
ilar to the 1D system, the change in dispersion induces

FIG. 2. Interaction-momentum coupling due to micromotion.
(a) Examples of micromotion for linear shaking (θs = 0◦).
Snapshots of the density |ψq (x, y, t)|2 within a single 2D
lattice site are shown for two states, (+q∗,+q∗) (red) and
(−q∗,+q∗) (black), within a shaking period τ . (b) As a re-
sult of the micromotion, the mean microscopic density 〈nq (t)〉
oscillates and reaches a maximum when the wavefunction is
most localized, and a minimum when it is most delocalized.
Each curve is colored as in Fig. 1(b); note that the density os-
cillations of the white state are identical to the plotted black
curve. Dashed lines show the averaged densities. (c) Maps
of the interaction factor ηq, equal to the time-averaged mi-
croscopic density (see text), for different polarizations. The
colored dots mark the ground states after accounting for the
interaction factor. Note that circular polarization retains the
D4 symmetry of the single particle dispersion.

a phase transition in which the condensate segregates
into domains, each containing atoms occupying one of
the four minima. Since the single particle Hamiltonian
is separable along the lattice axes, the kinetic energy is
independent of the shaking polarization θs, defined as
the relative phase between the two shaking lattices, see
Fig. 1(c).

We first explore the intriguing interplay between mi-
cromotion and interactions. Examples of the micromo-
tion, the back-and-forth oscillation of the atomic wave-
function during one period τ of the lattice shaking, are
shown in Fig. 2(a). Since the atomic density depends
on the wavefunction spread in both x– and y–directions,
interactions effectively couple the motion in the two di-
rections and destroy the separability of the system. In
particular, the micromotion creates a microscopic density
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FIG. 3. Observed coupling of interaction and momentum.
(a) Example, reconstructed domain structures (see text) rep-
resenting the density profiles of atoms in each well, measured
after crossing the effectively ferromagnetic phase transition
with the shaking polarizations indicated on each image. The
dashed circles guide the eye to the region containing the con-
densate. The correspondence between color and pseudo-spin
density (see text) is shown in the upper-right corner of panel
(b). (b) The imbalance D (see text) of the atomic populations
between the two quasi-momentum diagonals characterizes the
anisotropy which results from the quasimomentum-dependent
interactions for different polarizations. The solid curve is a
sinusoidal fit. The orange, dashed curve shows the expected
imbalance in the absolute ground state; the star emphasizes
that the expected imbalance is D = 0 for circular shaking
(θs = 90◦).

enhancement factor 〈nq(t)〉 = d2
´ d

0

´ d
0
dxdy|ψq(x, y, t)|4,

where ψq(x, y, t) is the (unit-normalized) Floquet steady
state wavefunction and the angle brackets denote the ex-
pectation value [37]. The enhancement factor character-
izes the ratio of the average density in a lattice site to the
coarse-grained density ρ. This enhancement factor oscil-
lates at the shaking frequency and can differ between the
four kinetic energy minima, as shown in Fig. 2(b). In
this example, the wavefunction expands and contracts
along the x– and y–axes in-phase for momenta along the
lattice shaking direction, leading to strong oscillations in
density. In contrast, the wavefunctions along the x– and
y–axes oscillate out-of-phase for states with momentum
perpendicular to the axis of lattice motion, reducing the
density oscillation. For circular shaking the wavefunc-
tions oscillate 90◦ out of phase for all four momentum

states, causing all four to have the same amplitude of
density oscillation and therefore the same interaction en-
ergy.

Since the typical dynamics of the condensate, includ-
ing the formation of domains after the phase transition,
occur on timescales spanning many shaking periods, they
are predominantly sensitive to the interaction energy,
Eq = ρg(t) 〈nq(t)〉, where the bar denotes time-averaging
over one shaking period. Therefore, we define the inter-
action factor,

ηq =
1

g0
g(t) 〈nq(t)〉, (4)

which accounts for the interplay between the interaction
strength and the micromotion, see Eq. (3).

In the first stage of our experiments, with static inter-
actions g(t) = g0, we control the interaction-momentum
coupling by tuning the shaking polarization, as shown in
Fig. 2(c). To leading order in q/qL the interaction factor
is,

ηq = α+ βs2 cos θsqxqy, (5)

where α and β are dimensionless constants that depend
on the shaken lattice parameters [37]. The strength of
this effect is greatest for linear shaking (θs = 0◦ or 180◦),
with which the momentum states along the axis of lat-
tice motion experience much stronger density modula-
tion, leading to a higher interaction factor than the mo-
mentum states perpendicular to the axis of lattice motion
(hereafter “off-diagonal states”), whose density is more
consistent over time. This effect causes domains to form
preferentially in the off-diagonal states.

We test for the presence of interaction-momentum cou-
pling by driving condensates across the phase transition
with different shaking phases θs and measuring the re-
sulting quasimomentum distribution. After loading the
condensate into the lattice, we linearly ramp up the shak-
ing amplitude, exceeding the critical amplitude and thus
driving the condensate across the phase transition. After
a brief time-of-flight we measure the density distributions
ni(r) of atoms occupying the quasimomentum state in
the i’th quadrant; for example, n1 is the density in the
(+q∗, +q∗) state. Finally, we calculate the pseudo-spin
density along each lattice axis, jx = n1 + n4 − n2 − n3

and jy = n1 + n2 − n3 − n4. See supplement for details
[37].

Typical reconstructed domain images for various shak-
ing polarizations are shown in Fig. 3(a). To better quan-
tify the biasing of the domains toward particular wells
for ensembles of many images, we introduce an imbal-
ance factor D = (N2 + N4 − N1 − N3)/Ntot, where Ni

is the population in the i−th quadrant and Ntot is the
total atom number. We observe a clear, polarization-
dependent biasing of the domains toward forming in off-
diagonal states, indicative of interaction-momentum cou-
pling, see Fig. 3(b). For linear shaking, which maximizes
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the interaction-momentum coupling, the diagonal imbal-
ance approaches 1 (-1) with θs = 0◦ (180◦), as expected.
Under these conditions, the D4 symmetry of the ground
states is clearly broken by interactions. As the shak-
ing polarization becomes more circular, the imbalance
is progressively reduced. For precisely circular shaking
(θs = 90◦) the interaction-momentum coupling disap-
pears and the D4 symmetry is restored, resulting in a
diagonal imbalance of D = 0.04(5) consistent with zero.
Because of the finite ramp speed in our experiments, the
phase transition is not adiabatic [35]. As a result, the bias
of the gas toward off-diagonal states increases with the
energy difference between the wells. This effect causes
the magnitude of the diagonal imbalance to smoothly in-
crease as the interaction-momentum coupling is enhanced
by tuning the shaking polarization from circular toward
linear, as observed in Fig. 3(b).

In the second stage of our experiments, we gener-
ate a density-dependent gauge field by applying syn-
chronized shaking and interaction strength modulation.
We tune the magnetic field near a Feshbach resonance
[38] to modulate the interaction strength as g(t) =
g0 − g1 cos (ωt− θg) at the same frequency as the lat-
tice shaking and with phase θg, see Fig. 4(a). In this
case, the interaction-momentum coupling can be under-
stood intuitively by comparing the microscopic density
and the interaction strength during each shaking period,
see Fig. 4(a). When the interaction strength oscillates
in phase (out of phase) with the density, the interaction
energy is maximized (minimized).

To quantify the interaction-induced field, the interac-
tion factor can be decomposed as, see Eq. (4),

ηq = η(0)
q +

g1

g0
η(1)
q , (6)

where η
(0)
q = 〈ηq(t)〉 is the static interaction factor and

η
(1)
q = −〈ηq(t)〉 cos(ωt− θg) is the modulated interaction

factor. We use circular shaking (θs = 90◦) so that the
static interaction factor maintains the D4 symmetry. For
small momentum |q| � qL the modulated interaction
factor takes the form [37],

η(1)
q = −

√
αβ

2
s eΘ · q, (7)

which corresponds to the density-dependent gauge po-
tential,

A(ρ) =

√
αβ

2
msg1ρ eΘ, (8)

whose direction is given by eΘ with Θ ≡ θg − θs/2. The
equivalent treatment of the gauge field in terms of an
occupation-dependent Peierls phase does not rely on the
small momentum limit [37]. The static interaction factor

η
(0)
q , which does not correspond to a gauge potential, can
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FIG. 4. Density-dependent synthetic field from synchronized
shaking and interaction strength modulation. (a) The up-
per panel plots the mean, microscopic density for circular
shaking (θs = 90◦). Each curve is colored as in Fig. 1(b).
The lower panel shows the modulated interaction strength
g (t) = g0−g1 cos (ωt− θg). The modulated interactions raise
(lower) the energy of quasimomentum states whose density
oscillates in phase (out of phase) with the interaction modu-
lation. (b) Modulated interaction factors for θg = 90◦ (left)
and θg = 45◦ (right). (c) Measurement of the average quasi-
momentum of the condensate (q∗ = 0.08 qL) in the presence of
the interaction-induced field (circles). Error bars show stan-
dard error. The dashed curves show simultaneous, sinusoidal
fits, which yield a phase offset of only 4 ± 3◦ from expecta-
tions. Simulations using the Gross-Pitaevskii equation [39]
(solid magenta curves) agree well with the experiment.

be made negligible by reducing the average interaction
strength g0. Salient examples of the modulated interac-
tion factors from a numerical calculation are shown in
Fig. 4(b).

Experimentally, we test for the interaction-induced
gauge field by measuring the bias toward particular
quasimomenta as a function of the interaction phase θg.
We first prepare the condensate in a stationary lattice
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with an oscillating scattering length. We then begin to
circularly shake the lattice, linearly increasing the shak-
ing amplitude and driving the system across the phase
transition. After a brief settling time, we measure the
momentum distribution ρ(q) based on time-of-flight ex-
pansion [36] and calculate the average quasimomentum
〈q〉 =

´
dqqρ(q) [37].

The average quasimomentum after the phase transition
shows a clear bias depending on the interaction mod-
ulation phase θg, indicative of the interaction-induced
gauge field, see Fig. 4(c). Based on the form of the
gauge potential shown in Eq. (7), we expect the bias-
ing along the x− and y−axes to take the approximate
forms 〈qx〉 ∝ cos(θg − 45◦) and 〈qy〉 ∝ sin(θg − 45◦). Si-
multaneous, sinusoidal fits to the data in Fig. 4(c) yield
a phase consistent with this prediction. The magnitude
of the bias in momentum does not reach q∗, since it de-
pends sensitively on the dynamics of crossing the phase
transition [11, 35] as well as the magnitude of the gauge
potential. In principle, the size of the interaction induced
field, and therefore the bias, can be increased by using a
larger interaction modulation amplitude. However, doing
so can induce other instabilities in the gas [40–42].

To confirm that the magnitude of the observed ef-
fect matches theoretical expectations, we have performed
simulations of this experiment using the Gross-Pitaevskii
equation [39]. The resulting magenta curves in Fig. 4(c),
which show the average outcomes of five simulations at
each θg (20◦ steps) with different random noise seeds,
agree nicely with our experiments.

In summary, we have demonstrated an interaction-
induced gauge field based on synchronous lattice shaking
and interaction strength modulation. Our work presents
a paradigm to guide the simulation of gauge field theories
using ultracold atom systems. For example, this scheme
can be used directly to simulate the anyon-Hubbard
model [23, 25–27], as detailed in the supplement [37].
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