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We propose a mechanism whereby disorder can enhance the transition temperature Tc of an
unconventional superconductor with pairing driven by exchange of spin fluctuations. The theory
is based on a self-consistent real space treatment of pairing in the disordered one-band Hubbard
model. It has been demonstrated before that impurities can enhance pairing by softening the spin
fluctuations locally; here, we consider the competing effect of pair-breaking by the screened Coulomb
potential also present. We show that depending on the impurity potential strength and proximity
to magnetic order, this mechanism results in a weakening of the disorder-dependent Tc-suppression
rate expected from Abrikosov-Gor’kov theory, or even in disorder-generated Tc enhancements.

Introduction. Disorder has been used as a power-
ful probe of superconducting order since a theoreti-
cal framework for interpreting its effects was provided
by Anderson[1] and Abrikosov-Gor’kov[2] (AG). Within
translation-invariant effective medium theories of this
type, disorder generally suppresses the critical temper-
ature Tc, with the exception of nonmagnetic impurities
in an isotropic, s-wave paired superconductor, where Tc
is impervious to disorder until the mean free path be-
comes of order an atomic spacing and localization effects
set in. The theory applies equally well to unconvention-
ally paired systems, where even nonmagnetic impurities
are typically pair-breaking. While it does not describe
Tc suppression quantitatively in strongly coupled systems
like cuprates, where Zn causes an initial suppression 2-3
times slower than the AG-rate[3–7], still almost univer-
sally Tc decreases upon addition of disorder.

There are, however, a few special situations where this
conclusion does not apply[8–25]. We do not consider
trivial Tc enhancements, e.g. impurities that dope the
system and thus change the Fermi surface, but rather
physical effects of disorder itself not included in the AG
approach for a simple BCS superconductor. For exam-
ple, Tc can be enhanced by disorder if the superconductor
is competing with another type of order, e.g. a density
wave, which is more sensitive to disorder than the super-
conductor [9–12]. Several authors have argued recently
that Tc can be increased by disorder at levels where lo-
calization becomes important due to the multifractality
of electronic wave functions[13–15]. Related studies of
Tc enhancements exist also in the fields of granular and
phase separated systems[16–18]. Finally we note a study
where modulating the local density of states by disorder
in several possible scenarios can yield an enhancement of
Tc[19].

Another class of studies have focused on effects of in-
homogeneity in the pairing interaction itself without ref-
erence to any particular microscopic mechanism to create
it[20–25]. From these studies, it is known that systems

with a modulated pair interaction have a Tc that may
be enhanced relative to a system with a homogeneous
pairing interaction fixed to the average in the modulated
system[20, 24]. Most theories of this type that rely on
pairing inhomogeneity are somewhat idealized, however,
since if the fluctuating pair interactions indeed arise from
disorder, impurities or defects will inevitably create a
concomitant screened Coulomb potential component that
will tend to break pairs, particularly in unconventional
superconductors.

In this work, we propose a different mechanism for
disorder-generated Tc-enhancements in unconventional
superconductors. We study the effect of atomic scale
defects on local spin fluctuations giving rise to d-wave
pairing, but include pair-breaking effects through self-
consistent studies of finite concentrations of disorder.
From previous studies, it is known that a single non-
magnetic impurity softens spin fluctuations locally[26–
28], which favors d-wave pairing within a spin-fluctuation
mediated scenario[29, 30]. Note that the transfer of spec-
tral weight is from typical normal state fluctuation en-
ergies of order ∼ t down to a fraction thereof; we do
not treat dynamical pair-breaking effects known to occur
when the fluctuations occur on the scale of Tc itself[31].
In terms of thermodynamics, however, such disorder-
enhanced local pairing must compete with the inevitable
pair-breaking effect of the impurities, and it is unclear
which effect dominates Tc for finite disorder concentra-
tions pimp. As shown in Fig. 1, we find that the locally
enhanced pairing scenario generally predicts significantly
slower Tc-suppression rates, and can even in some cir-
cumstances support a remarkable disorder-generated Tc-
enhancement. As seen from Fig. 1, this unusual behavior
of Tc is very different from that predicted by AG the-
ory, which yields for a d-wave superconductor a rapid,
monotonically decreasing Tc with increasing disorder.

Specific to the one-band Hubbard model, we note the
results of a recent dynamical cluster study of d-wave cor-
relations finding a small initial enhancement of Tc with
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FIG. 1. Critical superconducting transition temperature Tc
as a function of disorder concentration for nonmagnetic im-
purities of strength Vimp = 2 in d-wave superconductors
of Coulomb interaction strength U = 1.9 (blue curve) and
U = 1.83 (magenta curve). Results are averaged over four
different impurity configurations. The black line shows the
Abrikosov-Gorkov result corresponding to the U = 1.9 case.

pimp, and attributed it to an increase of the local ex-
change J in a strong-coupling picture[32]. This study
left unclear, however, under what circumstances a sys-
tem described by such a theory would exhibit conven-
tional AG-like Tc suppression with increasing pimp, and
when it will deviate strongly. Under what circumstances
can Tc really be enhanced by the addition of disorder?
The present study was motivated in part by this theoret-
ical question, and by recent electron irradiation experi-
ments performed on FeSe[33], which reported a 10% rise
in Tc under circumstances that precluded an explanation
in terms of doping or chemical pressure. Local pinning
of spin fluctuations by irradiation-induced defects was
one of the possible mechanisms discussed, but without
reference to the possible pair-breaking effects that such
defects could induce.

Model and Method. The starting point is the one-band
Hubbard model

H = −
∑
i,j,σ

ti,jc
†
iσcjσ +

∑
iσ

Uniσniσ̄ −
∑
iσ

µniσ

+
∑

i,iimp,σ

Vimpδi,iimp
niσ, (1)

with a concentration pimp of nonmagnetic impurities of
strength Vimp at random sites placed at positions iimp.

The operator c†iσ refers to creation of an electron with
spin σ at lattice site i, and niσ is the number operator
of spin σ particles at site i. The hopping elements ti,j
include nearest neighbor (NN) t = 1, and next-nearest
neighbor (NNN) t′ = −0.3, and the system is hole-doped
by x = 0.15, generating a standard Fermi surface rele-
vant to cuprates. In the homogeneous case, an on-site

repulsive Coulomb interaction U gives rise to an effec-
tive attraction for superconductivity in the d-wave singlet
channel as shown by weak-coupling spin-fluctuation the-
ories [34, 35], and in qualitative agreement with strong-
coupling numerical studies[36]. In the dirty case, how-
ever, U modifies the charge and spin densities as well as
the effective electron-electron interaction locally. To cap-
ture these effects, we first treat the Hubbard Hamiltonian
at the mean-field level

H0 = −
∑
i,j,σ

tijc
†
iσcjσ +

∑
iσ

(U〈niσ〉 − µ)niσ̄

+
∑

i,iimp,σ

Vimpδi,iimp
niσ, (2)

in order to determine the electronic densities self-
consistently in the presence of the disorder. Given the
self-consistent densities, the associated spatially mod-
ulated effective superconducting pairing arising from
higher order interactions in U is determined by [29]

V eff
ij = U +

U3χ2
0

1̂− U2χ2
0

∣∣∣
(i,j)

+
U2χ0

1̂− Uχ0

∣∣∣
(i,j)

. (3)

The susceptibility in (3) is a real space matrix given by

χσσ
′

ij =
∑
m,n

umiσumjσunjσ′uniσ′
f(Emσ)− f(Enσ′)

Enσ′ − Emσ + iη
, (4)

in terms of the eigenvectors umσ and eigenvalues Emσ
of Eq.(2). Thus, umiσ denotes the value of the eigen-
function umσ on site i. Note that, as is customary, the
pairing interaction is assumed to be fully determined by
the properties of the paramagnetic normal state.

After obtaining the effective self-consistent spin-
fluctuation mediated pairing kernel in real space, the
densities 〈niσ〉 and superconducting gap values ∆s

ij are
calculated via a second self-consistency loop from the full
mean-field Hamiltonian given by

HSC = H0 +
∑
i,j

[
∆s
ijc
†
i↑c
†
j↓ + H.c.

]
(5)

In the calculation of the singlet gaps

∆s
ij = −

V eff
ij

2

∑
n

[uniσvnjσ + unjσvniσ] tanh(En/2kBT ),

we account for superconducting links ∆i,i+δ, where ±δ ∈
{0, x̂, ŷ, 2x̂, 2ŷ, x̂ + ŷ, x̂ − ŷ}. We refer to the above pro-
cedure as the ”local pairing scenario”. We find that in
general, the NN links supporting d-wave superconduc-
tivity dominates, but higher order d-wave and subsidiary
on-site order is induced in the vicinity of the impurities.
We stress that the model contains only the free param-
eters U and Vimp. For the results below we fix U = 1.9,
and explore the dependence of Tc on Vimp and pimp.
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FIG. 2. (a-d) Local gap maps below Tc (a,b), at Tc (c) and above Tc (d) for a system of 8% impurities with Vimp = 2. (e)
Specific heat as a function of T for the clean system (black line) and for 8% disorder (blue line). The value of Tc as defined by
a finite gap exceeding 20% of the homogeneous gap value at T = 0 on 60% of the sites is shown by the dashed lines in (e).

The results from the local pairing scenario are com-
pared to standard AG theory of nonmagnetic impuri-
ties in unconventional (sign-changing) superconductors,
where Tc is obtained from the well known expression

ln
( Tc
Tc,0

)
= Ψ

(1

2

)
−Ψ

(1

2
+

1

4πTcτ

)
. (6)

The normal state scattering rate in the T -matrix approx-
imation is given by [37, 38]

1

τ
= 2πpimp

V 2
impN(0)

1 + (VimpN(0))2
, (7)

where N(0) is the density of states at the Fermi level and
Ψ(x) refers to the digamma function.
Results. For inhomogeneous systems, there are vari-

ous definitions of Tc that one might adopt. For example,
one could define Tc by the temperature at which the first
island becomes superconducting upon cooling. Instead,
we adopt a more experimentally relevant definition: Tc is
the highest temperature where more than 60% of the lat-
tice sites possess a gap value that exceeds 20% of ∆(0),
where ∆(0) is the gap of the clean system at T = 0 and
0.20∆(0) is of the order of the level spacing in our simula-
tion, i.e. the bandwidth divided by system size N2 with
N = 30. This rather conservative definition captures the
situation where all superconducting sites of the 2D lat-
tice are connected in the present case of randomly placed
point-like disorder. Note our calculations are strictly at
the level of inhomogeneous (BCS) mean field theory, and
effects of fluctuations are therefore not included. These
fluctuations may be expected to suppress the mean field
Tc significantly in situations where the length scale of the
inhomogeneity is larger than the coherence length[20].

Local gap maps at temperatures both below and above
Tc are shown in Fig. 2(a-d) for a system with 8% im-
purities of strength Vimp = 2. We show the magni-
tude of the superconducting d-wave links calculated as
|∆i| = 1

4 [∆i(x̂)−∆i(ŷ) + ∆i(−x̂)−∆i(−ŷ)], where x̂ (ŷ)
denotes the unit vector along the x-axis (y-axis). At low

T , large gap enhancements in the vicinity of the impu-
rity sites are clearly visible as seen from Fig. 2(a). Upon
increasing temperature the order is diminished and de-
stroyed at sites farthest away from the impurities until
eventually the superconducting regions become fully sep-
arated in space above Tc as seen in Fig. 2(d).

Due to the inhomogeneity of the superconducting
phase, the thermodynamic response of the phase tran-
sition is smeared. We calculate the specific heat from
the derivative of the entropy C = T∂S/∂T , where

S=−2kB
∑
En>0

f(En) ln(f(En))+f(−En) ln(f(−En)).

The superconducting transition of the clean system is
clearly manifested by a jump in the specific heat at Tc
as shown in Fig. 2(e) by the black line. By contrast, in
the dirty system with 8% disorder, a broad peak marks
the transition at a temperature that agrees well with the
definition of Tc stated above [39].

In Fig. 1 we show the full evolution of Tc versus pimp for
the case with Vimp = 2. The Tc-enhancement is clearly
visible in an extended range of disorder concentrations in
the case with U = 1.9. For weaker U , Tc is suppressed for
all pimp but still exhibits a large critical impurity concen-
tration. In fact, within the local pairing scenario the su-
perconductor is much more robust to impurities than pre-
dicted by AG theory, easily supporting a superconducting
state to an order of magnitude more disorder as seen from
Fig. 1. Figure 1 thus demonstrates that indeed the local
pairing enhancements caused by the softened spin fluc-
tuations can overcome the inevitable pair-breaking for
a significant range of pimp. A similar study for attrac-
tive impurities [40] reveals that the Tc-suppression rate
remains weaker than prescribed by AG-theory, but no
disorder-generated Tc-enhancement exists in the case of
Vimp < 0 for the cuprate-like band structure studied here.

In order to understand the origin of the Tc enhance-
ment of Fig. 1, we show in Fig. 3(a) the increase in NN
attraction 1

4 [V eff
i,i+x̂ + V eff

i,i+ŷ + V eff
i,i−x̂ + V eff

i,i−ŷ] for a sys-
tem of 8% impurities, still with Vimp = 2. We calculate
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FIG. 3. (a) Real space map of the increase in NN pair-
ing attraction above the pairing strength of the clean system
V eff − V eff

0 at T = 1.2Tc,0, where Tc,0 is the critical tempera-
ture of the clean system. The system contains 8% impurities
of strength Vimp = 2 (white dots). (b) The resulting local d-
wave gap map for the same system as in (a). Black sites have
∆i < 0.1∆(0). (c,d) Local gap at T = 0.7Tc,0 around a single
impurity (c) and two impurities in diagonal-dimer formation
(d) of strength Vimp = 2. Note the difference in color scale.

the pairing of the dirty system V eff(T ) at T = 1.2Tc,0,
where Tc,0 is the critical temperature of the clean sys-
tem and subtract the NN attraction of the pure system
V eff

0 (Tc,0). We stress that the attraction in the dark re-
gions of Fig. 3(a) is not in itself sufficient to support
superconductivity (since T > Tc,0). Nevertheless, the
system displays a non-zero d-wave gap in these regions,
as seen from Fig. 3(b), due to proximity coupling to the
regions of enhanced pairing, which thereby boost the su-
perconducting condensate of the entire system. Such lo-
cal regions favorable to pairing can be understood from
certain advantageous clustering of impurities, illustrated
in Fig. 3(c) and (d). For example, a constructive inter-
ference of two impurities forming diagonal dimers lead
to gap enhancements of ∼ 200% with 6 sites involved,
as compared to the ∼ 50% enhancement effect of four
sites around a single impurity. Diagonal structures of
more than two impurities are even more advantageous
and systems with such structures lead to an even larger
increase in local pairing.

In Fig. 4(a) we show the results of the Tc-suppression
rate for the case with a weaker impurity potential Vimp =
1. As expected, weaker scatterers raise the critical disor-
der concentration. However, it is found that 1) there re-
mains a substantial difference between the AG result and
the local pairing scenario, and 2) the Tc enhancement is
nearly eliminated. There are two reasons for property 1);
correlation-induced screening[32, 41–46], and local pair-
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FIG. 4. (a) Suppression of Tc versus nonmagnetic disorder
concentration, Vimp = 1. The dashed line refers to AG the-
ory. The open circles correspond to a real space calculation
with U = 0 and constant pairing, roughly confirming the
AG result, as expected. The red (blue) curve shows the Tc-
suppression for U = 1.9, and constant pairing (inhomoge-
neous local pairing). (b-d) Magnitude of the local d-wave gap
in a system with 5% disorder at T = 0.7Tc,0. Impurity posi-
tions are marked by white dots. The gap maps correspond to
the cases of U = 0, constant pairing (b); U = 1.9, constant
pairing (c); and U = 1.9, local pairing (d).

ing enhancements. By performing the real-space calcu-
lation for the case U = 0, while including a constant
nearest-neighbor attraction, one almost quantitatively
obtains the AG result, despite the local suppressions of
the gap. However, as an instructive intermediate step
we have calculated the Tc-suppression when U 6= 0, but
without local pairing modulations, as shown by the red
curve in Fig. 4(a). A comparison of gap maps in Fig. 4(b)
and in Fig. 4(c) reveals a less modulated gap for the case
U 6= 0 than for U = 0. This correlation-induced screening
arises from the induced density modulations at the impu-
rity site as seen by rewriting the density mean-field term
as
∑
iσ U〈niσ〉niσ̄ =

∑
iσ U [∆niσniσ̄ + n0

2 (niσ + niσ̄)],
where ∆ni = 〈ni〉 − n0, and n0 denotes the density of
the clean system. The presence of a local repulsive po-
tential repels electrons from the impurity site creating
a ∆nimp = 〈nimp〉 − n0 < 0 . This reduces the effec-
tive impurity potential [Vimp + U∆nimp], an effect most
relevant to weak impurity potentials, and reduces their
Tc-suppression rate. The opposite effect happens for
magnetic impurities, which are anti-screened by U [47].
The Tc-suppression rate is further decreased when the
electronic correlations are included also in the effective
pairing interaction in the inhomogeneous system, as seen
from Fig. 4(a), and the comparative gap map in Fig. 4(d).
We note that the value of U at the impurity sites affects
the screening effect, but does not modify Tc in the local
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pairing approach since the pairing enhancement is not
occurring at the impurity sites, but in their vicinity.

Regarding point 2) above, stronger individual impuri-
ties of Vimp ' 2 lead to larger local pairing on neighboring
sites compared to Vimp ≤ 1. At small to moderate con-
centrations pimp, stronger impurities are therefore more
beneficial for the global Tc. However, a larger impurity
potential is more pair-breaking, and therefore at large
pimp the pair-breaking effect becomes dominant in agree-
ment with the decreasing critical impurity concentration
for larger impurity potentials. In the unitary limit the
density is fully suppressed at the impurity sites, and Tc
is independent of Vimp. In this limit, the pair-breaking
effect dominates at all impurity concentrations and Tc is
determined by pimp alone.

In conclusion, we have shown how atomic-scale dis-
order generates highly inhomogeneous effective pairing
interactions within a spin-fluctuation pairing scenario.
This results in a superconducting phase with local re-
gions of large gap enhancements compared to the ho-
mogeneous system, and makes the superconductor much
more robust to disorder, in some cases enhancing Tc of
the disordered system. The mechanism described in this
work is enhanced for larger impurity potentials, and by
the proximity of the system to a magnetic instability. It
is a likely explanation for the well-known slower decrease
of Tc with disorder in cuprates relative to that antici-
pated from AG theory[3–7], and may also be related to a
recently observed increase of Tc with electron irradiation
in FeSe[33].
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