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A versatile and efficient variational approach is developed to solve in- and out-of-equilibrium problems of
generic quantum spin-impurity systems. Employing the discrete symmetry hidden in spin-impurity models, we
present a new canonical transformation that completely decouples the impurity and bath degrees of freedom.
Combining it with Gaussian states, we present a family of many-body states to efficiently encode nontrivial
impurity-bath correlations. We demonstrate its successful application to the anisotropic and two-lead Kondo
models by studying their spatiotemporal dynamics and universal behavior in the correlations, relaxation times
and the differential conductance. We compare them to previous analytical and numerical results. In particular,
we apply our method to study new types of nonequilibrium phenomena that have not been studied by other
methods, such as long-time crossover in the ferromagnetic easy-plane Kondo model. The present approach will
be applicable to a variety of unsolved problems in solid-state and ultracold-atomic systems.

Understanding out-of-equilibrium dynamics of quantum
many-body systems has become one of the central problems in
physics. Recent experimental developments in diverse fields
such as ultracold atoms [1-5], mesoscopic physics [6—10],
molecular electronics [11], and carbon nanotubes [12, 13]
have posed new theoretical questions for studying many-body
dynamics driven by external fields or fast changes in the
Hamiltonian. Quantum spin-impurity models (SIM), such as
the famous Kondo model [14], constitute a paradigmatic class
of many-body systems which lie at the heart of many strongly
correlated systems. Their nonequilibrium dynamics underly
transport phenomena in mesoscopic systems [15-21] and non-
Fermi liquid behavior in heavy fermion materials [22-24], and
give theoretical foundation for the real-time formulation of
dynamical mean-field theory (DMFT) [25].

The ground-state properties of SIM are now well estab-
lished by perturbative renormalization group (RG) [26], nu-
merical renormalization group (NRG) [27] and the Bethe
ansatz [28-33]. The challenging and fascinating question of
out-of-equilibrium dynamics has recently come under active
investigations in theory [34-76] and experiments [5-10]. Ex-
amples include time-dependent NRG [34—40], density-matrix
renormalization group (DMRG) [41-49], time evolving block
decimation (TEBD) [50, 51], real-time Monte Carlo [52—
56], perturbative RG [57-62], flow equation method [63-65],
coherent-state expansion [66—68], and exact analyses [69-76].
Despite the rich variety of methods, they often become in-
creasingly costly at long times due to, e.g., artifacts of the
logarithmic discretization [77] or large entanglement in the
time-evolved state [78]. Some of them can only determine the
dynamics of the impurity but not that of the bath, or are re-
stricted to particular parameter regimes. Moreover, it remains
a major challenge to apply them to generic SIM beyond the
simplest Kondo models. These challenges motivate the search
for new approaches to quantum impurity systems.

In this Letter, introducing a new canonical transformation,

we present a widely applicable variational approach to study
in- and out-of-equilibrium properties of generic SIM. Besides
the ability to efficiently capture the correct impurity-bath cor-
relations and the conductance behavior, it reveals previously
unexplored nonequilibrium dynamics such as ferromagnetic
(FM) to antiferromagnetic (AFM) crossover (see the panels 111
and IV in Fig. 1c) in the FM easy-plane Kondo model. Such
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FIG. 1. (a) Ground-state impurity-bath spin correlation xj of the

anisotropic Kondo model. (a,inset) The RG phase diagram and the
parameters (jj,j.) corresponding to I (—0.5,0.2) (blue square)
in the ferromagnetic phase (FM), II (0.5,0.2) (red triangle) and
III (—1.85, 2) (brown circle) in the antiferromagnetic phase (AFM).
(b) Quench dynamics of the impurity magnetization (65,,(%)). (c)
The corresponding spatiotemporal dynamics of correlations x7 (¢) in
I FM phase, II AFM phase, III easy-plane FM regime and IV the

same as in III but on a different scale. System size is L = 400.



long-time spatiotemporal dynamics is difficult (if not impos-
sible) to obtain in other approaches. Our versatile variational
approach will pave the way towards solving interesting novel
problems in both solid-state and ultracold-atomic systems.

Canonical transformation.— We first formulate our ap-
proach in the most general way as it is applicable to a wide
class of SIM. The difficulty in SIM stems from the need to
treat the strong entanglement between the impurity and bath.
Here we introduce a new canonical transformation that com-
pletely decouples the impurity spin and bath degrees of free-
dom. We consider the Hamiltonian

FI = Iijath + f{int + Himpa (1)

where Hbath = Zlma \Il hlm ma describes an arbitrary
single-particle Hamlltoman w1th fermionic or bosonic cre-
ation (annihilation) operator \I' (\Ill(,) for the [-th bath mode
with spin «. For simplicity, we con51der a noninteracting spin-
1/2 bath with o =1, | [79]. The Hamiltonian Hmt = Simp - )
represents a generic interaction between the impurity and the
bath with §ip, = Fimp/2 being the impurity spin-1/2 oper-
ator. We define the bath- sp1n operator 1nclud1ng couplings
as ¥V = >°19]0)/2 with 6] = 37 5 \Illacraﬁllllg The
interaction strengths g? are arbitrary and can be anisotropic
and long-range. We also include the impurity Hamiltonian as
ﬁimp = —h slmp Paradigmatic examples having the inter-

action form Hmt include the Kondo-type Hamiltonians [14]
where the coupling g, is local, and the central spin model
[80] where an interaction is long-range while ﬁbath is frozen.

To construct the canonical transformation, we observe that
the Hamiltonian has a parity symmetry, [H,P] = 0, with

]P) - Ulmprﬂth‘ Here, HADbath = e(iﬂ/Q)(Zl &lz+N) is the par-

ity operator acting on the bath, where N is the total particle
number. The symmetry follows from the fact that H is invari-
ant under the transformation P~ O I@’, which rotates the entire
system around z axis by =, i.e., transforms both impurity and
bath spins as 6*Y — —&®¥. Our aim is to employ a parity
conservation to find the disentangling transformation U sat-
isfying UPU = 62 p such that the impurity spin turns out
to be a conserved quantity in the transformed frame. We can
construct such a unitary transformation as

- iy, 1 s
U= exp[ ; lmpmh} = 75 (1t Puann) . @

where we use P%ath = 1. This leaves Hy,¢p invariant, while

it maps the interaction onto H int = UTH, int U:

Hingfmpiulﬁbath( SV /2t lmpiZ), 3)

and flimp onto ﬁimp =—h slmpIP’bath. Remarkably, the im-
purity spin now commutes with the transformed Hamiltonian

[H ’ §1$mp
degrees of freedom. The construction of U holds true for ar-
bitrary conserved parity operator and can be readily applied to

a variety of SIM, including two-impurity systems [81].

] = 0 and is thus completely decoupled from the bath

Variational approach.— We combine the transformation (2)
with fermionic Gaussian states [82, 83] and introduce vari-
ational states to efficiently encode nonfactorizable impurity-
), is com-

pletely determined by its covariance matrix I" [82]:

(Detanms = 5 (Volibe,sas nms]| o), 4)

where we introduce the Majorana operators wl la = \I' ot
U,,, and wgJa = z(\I/la — \Illa). For the total system, we con-
struct states of the form |Uyo) = U |[+2)imp| ¥p) with T' as
variational parameters. Employing the time-dependent varia-
tional principle [84, 85], we obtain the imaginary- and real-
time evolution equations for I':

g rar, (5)
dr
ar
o =MD -7, (6)

where H = 49E /T is the functional derivative of the mean
energy B = (\I/tot\fl |Wot) [86]. The variational ground state
can be obtained in the limit 7 — oo in the imaginary-time
evolution (5). In contrast, Eq. (6) allows us to calculate the
real-time dynamics of SIM.

Equilibrium properties.— As a paradigmatic example, we
first apply our approach to the anisotropic Kondo model:

L
I;[ = _th Z (é;r’aéH»l,a +hC)

I=—L

% Y GrtaplhaOasfost %&ﬁnp@g,aaigéwv Q)
Y=,y
where é;@ (€1,q) creates (annihilates) a fermion with position
[ and spin «, the summations over «, [ are contracted. We
denote the dimensionless Kondo couplings as j;;, 1 = prJ), 1
with pp = 1/(27ty,) being the density of states at the Fermi
energy. We choose the unit ¢;, = 1 hereafter.

The anisotropic Kondo model exhibits a quantum phase
transition [87] between FM and AFM phases as shown in the
RG phase diagram [26] in the inset of Fig. l1a. In the main
panel, we show the ground-state impurity-bath spin correla-
tions xj = (6%,,07)/4 in three different regimes. The FM
results at I (blue square) and AFM results at II (red triangle)
indicate the formation of the triplet and singlet pairs of the im-
purity and bath spins, respectively. Importantly, our method
also correctly reveals the AFM nature at III (brown circle) that
is close to the phase boundary.

As a critical test of our approach, we extract the Kondo
screening length &k in the variational ground state and test
the universal behavior in the SU(2)-symmetric case j = jj =
71 > 0. We determine £k as the length scale below which
most of the Kondo screening cloud is developed [50, 88].
Specifically, we introduce a threshold f for the integrated
antiferromagnetic correlations Yar(l) = me|:0,2,4».. Xm
(Fig. 2a, inset) with X, = (Fimp - Fm)/4, and extract &k
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FIG. 2. Ground-state properties of the Kondo model. (a) Screening
length £k plotted for different Kondo coupling 5 = prJ and thresh-
olds f. The dashed lines indicate the scaling £x o e'/7. (inset) The
Kondo length £k is extracted as a length scale in which a fraction
1 — f of total antiferromagnetic correlations is contained. (b) Spin
correlations plotted in the dimensionless unit of £k for f = 0.05,
collapsing onto the universal curve. The dashed lines indicate the
scaling [~* (I~?) in short (long) distance. System size is L = 400.

from the implicit relation: f = 1 — Xap(&x(f))/Zar(L)
[89]. Figure 2a plots the extracted £k (f) against the inverse
Kondo coupling 1/ for different f. The results agree with the
nonperturbative scaling & o Tjc' oc e!/7 [22] independent
of the choice of f. As a further test, we plot x; in units of the
extracted £k (Fig. 2b). Remarkably, all the results for differ-
ent Kondo couplings j collapse onto the same universal curve
and show the crossover from [~! to (=2 decay at [ /&g ~ 1
[90-92]. To avoid finite-size and lattice effects, here we set j
large enough such that &g < L while it is kept small enough
so that & is still larger than the lattice constant. To meet the
former condition, we ensure that the sum rule ), x; = —3/4
[93] is satisfied with an error below 0.5%.

Out-of-equilibrium dynamics.— We now apply our ap-
proach to study out-of-equilibrium dynamics. To be concrete,
we analyze the quench dynamics starting from the initial state
| T)imp|F'S), where |FS) represents the half-filled Fermi sea
of the bath. Previously, using the bosonization mapping be-
tween the Kondo model and the spin-boson model [87], the
relaxation dynamics have been studied by NRG [35] and the
bosonic Gaussian states combined with a unitary transforma-
tion [85]. While the latter has been specifically designed to the
spin-boson model, our approach is applicable to generic SIM.
Moreover, in the previous methods one had to use strictly
linear dispersion and to introduce an artificial cut-off energy.
Hence, one of distinctive features in our approach is that it can
be applied without relying on the bosonization and thus allows
for a quantitative comparison with an experimental system.
This is particularly important in light of recent experimental
developments in simulating dynamics of SIM [5-11, 94].

Figures 1b,c show the magnetization dynamics (67, (%))
and spatiotemporal spreading of spin correlations x7 (¢) after
the quench. As shown in the panels I and II in Fig. lc, spin
correlations develop FM and AFM correlations after passing
through the “light cone” created by AFM and FM ballistic
spin waves, respectively. These AFM (FM) spin waves result

from the excess spin in the generation of the triplet (singlet)
pair around the impurity. As shown in Fig. 1b, the magneti-
zation eventually relaxes to a value close to zero in the AFM
phase, indicating the formation of the Kondo singlet, while the
value remains finite in the FM phase. The dynamics associate
with the fast oscillations having period characterized by the
bandwidth 27 /D with D = 4¢;, and i = 1 (see e.g., Fig. 1b
inset). These fast oscillations originate from high-energy ex-
citations of a particle from the bottom of the band [95] and
were absent in the bosonized treatments.

Most interestingly, at the point III in easy-plane FM regime
(|4 < |JL]), spin correlations exhibit the distinct crossover
dynamics from FM to AFM (panel III in Fig. 1c). As shown
in the closeup panel IV, the initial development of FM correla-
tions leads to the emission of ballistic AFM spin waves while
the subsequent crossover to AFM associates with the repeated
emissions of FM spin waves. The origin of such crossover
can be understood from the nonmonotonic RG flows in this
regime (Fig. la, inset), where short (long) time dynamics is
governed by the high (low) energy physics characterized by
FM (AFM) coupling Jj (J1). Here, the real time effectively
plays the role of the inverse RG scale [57]. The predicted spa-
tiotemporal dynamics can be readily tested with site-resolved
measurements as allowed by quantum gas microscopy [1-4].

As a critical test, we study the nonperturbative scalings
of the relaxation time scales 7o, for the integrated corre-
lations X ar(L,t) and Tyae for the impurity magnetization
(05np(t)) in the SU(2)-symmetric case. After the quench,
each observable eventually relaxes to its steady-state value
and we extract the relaxation times by fitting the tale dynam-
ics with an exponential function (Fig. 3a,b inset). The main
panels show that within numerical errors the relaxation times
for both observables show the nonperturbative dependence
Teorr 0¢ €17 and Tynae o €2/7. The observed different scal-
ings agree with the TEBD results [50]: 7Teop o e(1:5%0-2)/7
and Ty o e(19%0-2)/J (a rather large deviation in 7.o,, has
been attributed to the difficulty of taking the adiabatic limit in
the Anderson model).

a) 10 - b) — -
( )r— IN T 6o =(0.96+0.05)x 1/ ( ) = Int . =(2.11£0.08)x1/j
c e * g o
= +0.21+0.02) _.-* st +0.01x0.01) .~
5 ,/'* F'E | T
© - 10
- c
GE) 2 o o8 AT
£ # = e 08
=9 oE IS ¥ O gs
= 8.5 02 £ 3 ; 2 o
o o = N 04}
Lo S0 04 c T N
= 0 20 5 2 =
g = L5 = e
o) €8 -06 = 9.0 D 02
é s} =0 Q © 10 @
°c o 1 20 s o @E E o m w
_100 time | © < time [1/tn]
25 3 3.5 4 25 3 3.5 4

inverse Kondo coupling 1/ inverse Kondo coupling 1/
FIG. 3. Relaxation time scales 7 in (a) correlation and (b) magne-
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z

relaxation times are extracted by fitting 3 ar (L)(t) and (65, (t)) in
long-time regime with the function a + be~t/¢. The dashed lines
in the main panels indicate the fitted lines, showing nonperturbative
scaling In7 o 1/j. System size is L = 400.
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Transport dynamics.— We finally apply our approach to the
two-lead Kondo model [58] that is relevant to experiments in
mesoscopic systems. We consider the Hamiltonian

oo =" {—th(éj’anél+17an+h.c.) + eVl nlan
In

+£ Z &imp . ég’andagéoﬁn/, (8)
nm’

where n = L, R denotes the left (L) or right (R) lead. We
set the bias potential V1, g of each lead to be Vi, g = £V/2.
The initial condition is [1)imp|FS)1,|FS)r with |FS)y, r being
the half-filled Fermi sea of each lead. We then quench the
Hamiltonian (8) and study the dynamics of the current I()
between the two leads:

ie R R R
I(t) = EJ E [<0'imp : CgaLO'ag Copr) —h.c.|. (9)
ap

After the quench, the current eventually reaches its quasi-
steady value. We determine the differential conductance G =
dI/dV from the steady current I(V )obtained by taking time
average [39, 43, 44, 47]. Applying a magnetic field h,, we
confirm the quadratic behavior Go(1 — cp(h,/Tk)?) with the
correct coefficient cp = 72 /16 at low field and the logarith-
mic behavior 72G/(161n*(h,/Tk)) at high field, where Gy
is the conductance at the zero field [21, 96-103] (Fig. 4a). In
contrast, if we change the Kondo coupling j, we expect the
nonmonotonic behavior because G is trivially zero at 5 = 0,
while it should degrade in j — oo due to the formation of
the bound state tightly localized at the impurity site, which
prevents other electrons from approaching the junction. Fig-
ure 4b confirms this nonmonotonic dependence of G against
the Kondo coupling j. Different from two-channel systems
[104-106], the nonmonotonicity originates from intrinsically
finite bandwidth in the lattice model and is absent in the con-
ventional infinite-bandwidth treatment [96, 107].

Figure 4c shows the nonlinear conductance behavior at fi-
nite bias V. Two remarks are in order. Firstly, the numerical
error due to current fluctuation in time obscures minuscule
changes of G in V < Tk, making it difficult to precisely
test the quadratic behavior [39, 43, 44, 47] in the perturbative
regime. This can be worked out if we implement our approach
in a different way based on the linear response theory. Sec-
ondly, in V' > Tk the bias eventually becomes comparable
to the finite bandwidth (and to the Fermi energy) and calcula-
tions of current and conductance are no longer faithful. This
is a common limitation in real-space calculations [39, 47] and
can be avoided if one uses the momentum basis of bath modes
and specify the linear dispersion with a large bandwidth. Yet,
we emphasize that the present implementation is already reli-
able (at least) in the intermediate regime V' ~ Tx.

Discussions.— A simple entanglement-based argument can
give insights into the success of our approach. On the one
hand, our variational approach considers the following family
of states:

‘\IJtot> = U|+r>imp|qu>
= D) impPs [W5) + [V )impP|¥1),  (10)

where |0y, is a Gaussian state and Py = (1 £ Ppayp)/2. On
the other hand, a recent study [108] has shown that most of
the entanglement in the Kondo singlet takes place with just
one specific single-particle state, leading to the approximative
expression originally suggested by Yosida [109]:

1 . R

[kondo) = 75 (11 )imp dIES) |4 )i d1IFS) ) (1)
where cig_ =>,d élTU is the dominant single-particle state. In
fact, Eq. (11) belongs to our family of variational states (10) as
shown by the choice |¥y,) = (JI - J¥)|FS>/\@ This obser-
vation indicates the ability of our variational state to efficiently
encode the most significant part of the impurity-bath entangle-
ment. Yet, we stress that our variational states go beyond the
simple ansatz (11) since they take into account general Gaus-
sian states instead of the trivial Fermi sea. Such a flexibility is
crucial to obtain quantitatively accurate results [86].

In summary, we presented a versatile and efficient varia-
tional approach to study in- and out-of-equilibrium physics
of SIM. Despite its simplicity, we demonstrated in the
anisotropic and two-lead Kondo models that the variational
states successfully capture the correct correlations and con-
ductance behavior. In particular, it has already found applica-
tions to revealing previously unexplored physics such as the
long-time crossover dynamics. Further details can be found
in the accompanying paper [86], where the full expression of
the functional derivative H and the benchmark results with the
matrix-product-state calculations are presented.

The present approach should be applicable to a vari-
ety of interesting unsolved problems in both solid-state and
ultracold-atomic systems. For instance, our approach can be
readily generalized to bosonic systems [110-113], the Ander-
son model and multiple impurities [81], which will be pub-
lished elsewhere. Another promising direction is an extension



of our approach to multi-channel systems [9, 20, 104—106]
and the central spin model [80]. A generalization to finite
temperatures is possible by using Gaussian density matrices.
Including the phase factor, it is also possible to calculate the
spectral function [46, 59]. It is particularly interesting to test
the maximally fast information scrambling [114] in the non-
Fermi liquid phase of the multi-channel Kondo models [51].
On another front, the proposed variational approach could be
applied as a basis for a new type of impurity solver for DMFT
[25].
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