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The thermal Hall conductance in the half-filled first Landau level was recently measured to take the quantized
non-integer value κxy = 5/2 (in units of temperature times π2k2B/3h), which indicates a non-Abelian phase
of matter. Such exotic states have long been predicted to arise at this filling factor, but the measured value
disagrees with numerical studies, which predict κxy = 3/2 or 7/2. We resolve this contradiction by invoking
disorder-induced formation of mesoscopic puddles with locally κxy = 3/2 or 7/2. Interactions between these
puddles generate a coherent macroscopic state that exhibits a plateau with quantized κxy = 5/2. The non-
Abelian quasiparticles characterizing this phase are distinct from those of the microscopic puddles and, by the
same mechanism, could even emerge from a system comprised of microscopic Abelian puddles.

The fractional quantum Hall (FQH) state at Landau level
filling factor ν = 5

2 was the first experimentally observed
even-denominator state [1]. Soon after its discovery pairing
was suggested to play an important role in its formation [2, 3],
and several candidate paired state were proposed [2–7]. While
the topological properties of these states have been thoroughly
studied theoretically, their identification for the experimen-
tally realized ν = 5

2 has proven difficult [8]. Numerically, ex-
act diagonalization [9–15] and DMRG studies [16, 17] point
towards the non-Abelian Pfaffian state, proposed by Moore
and Read [2, 3], and its particle-hole (PH) conjugate (the
“Anti-Pfaffian” [6, 7]) as the most likely ground states.

Several experiments were carried out to differentiate be-
tween the candidate states. These include tunneling into the
edge [18–21]; noise measurements to probe the quasiparti-
cle charge [22] (found to be e∗ = e

4 ) and the existence of
upstream neutral modes [23, 24]; interference [25]; and—
most recently—a measurement of the thermal Hall conduc-
tance [26]. The most unambiguous among these is the thermal
Hall conductance, a topologically protected property whose
quantized value differs between the candidate states. It was
found experimentally to be κxy = 5/2 (in units of temperature
times π2k2B/3h) [26]. Its half-integer value identifies the state
as non-Abelian. It is, however, inconsistent with both Pfaffian
and Anti-Pfaffian, for which the values of 7/2 and 3/2 are
expected. Rather, 5/2 is consistent with a non-Abelian state
coined as the particle-hole Pfaffian (PH-Pfaffian), also known
as T-Pfaffian [27–31] in the context of topological insulator
surfaces. This phase first appeared in [7], and was recently
reinterpreted in the context of Dirac composite fermions [32].
A prototypical wave function was proposed in [33], which
also argued PH-Pfaffian to be most likely in light of earlier
experiments. The (113) state [34] with κxy = 2 was also sug-
gested, but deemed less likely.

Here we propose a resolution to the discrepancy between
numerical predictions and experimental results. We focus on
an ingredient that is undeniably present in experimental sys-
tems, but absent in numerical studies: quenched disorder. The
possible stabilization of the PH-Pfaffian phase by disorder was
suggested in [33]. We start with the observation that when
PH symmetry is present, i.e., without Landau-level mixing,
Pfaffian and Anti-Pfaffian are degenerate at ν = 5

2 . Sponta-
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FIG. 1. Proposed phase diagram of the approximately half-filled
first excited Landau level. Without disorder, the ground state is ei-
ther Pfaffian or Anti-Pfaffian, depending on whether the system is
more particle-like (ν . ν∗) or hole-like (ν & ν∗) with an expected
first-order transition at ν = ν∗ ≈ 5

2
. With disorder, this transition

splits into four continuous phase transitions where the thermal Hall
conductance changes by ∆κxy = 1/2. For even stronger disorder,
the system may enter a thermal metal, with non-quantized κxy . In
contrast, the electrical Hall conductance σxy = 5

2
e2

h
remains quan-

tized across these transitions.

neous breaking of PH symmetry then determines which phase
is realized. Deviating from this filling explicitly breaks PH
symmetry and additionally introduces quasiparticles. In par-
ticular, if one phase prevails for ν > 5

2 , its PH partner must be
realized for ν < 5

2 . With Landau-level mixing, PH is only an
approximate symmetry at any filling and we expect the transi-
tion between the two phases to become shifted to ν∗ ≈ 5

2 . For
ν = ν∗ + δν, we assume that δν < 0 favors Pfaffian while
δν > 0 favors Anti-Pfaffian.

In the presence of smooth density variations, we expect
puddles of Pfaffian and Anti-Pfaffian to form, whose size is
much larger than the magnetic length, but smaller than the
sample size. The disorder-induced puddle formation is strictly
justified in the limit of zero-Landau level mixing where it fol-
lows from the statistical PH symmetry combined with a well-
known argument by Imry and Ma [35] (see also [36]). We
assume the same qualitative picture applies in the experimen-
tal systems without exact PH symmetry. The electronic Hall
conductance is σxy = 5

2
e2

h independent of the relative areas
occupied by the two phases, since both have identical σxy . In
contrast, κxy is determined by the predominant phase to be
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FIG. 2. Possible edge modes of three kinds of Pfaffian phases. All
three phases have identical charge modes, but differ in the number
and chirality of neutral Majorana modes (indicated by the number
and direction of arrows) and consequently in their thermal Hall con-
ductance.

either κPfaffian
xy = 7/2 or κAntipf.

xy = 3/2.
Our main result, summarized in Fig. 1, is that disorder splits

the direct transition into a sequence of four transitions, each
characterized by a change of 1/2 in κxy . Between the tran-
sitions, κxy is sharply quantized to the values 3/2, 2, 5/2, 3,
and 7/2. For weak disorder the filling factor ν functions as a
tuning parameter that drives the system across the four con-
tinuous quantum phase transitions. For fixed ν but increas-
ing disorder strength, the system may transition into a thermal
metal phase [37–41] with non-quantized κxy .

Pfaffianology. Five candidate states for ν = 5
2 are rele-

vant to the present work, each hosting multiple edges modes
that interact among themselves. Beyond a length scale `eq the
edge modes reach mutual equilibrium, at which point the state
achieves a quantized thermal Hall conductance [42].

We will henceforth assume that all relevant length scales
exceed `eq. (The values of `eq, as well as other microscopic
length scales, are non-universal and hard to estimate. Fortu-
nately, these values are not crucial for our analysis; we will
return to this point after explaining the phase diagram.)

All these states have two chiral (ν = 1) electron edge
modes of the two filled Landau levels, each contributing
σxy = 1 and carrying central charge c = 1 and one co-
propagating (ν = 1

2 ) charge mode contributing σxy = 1
2 and

carrying c = 1; these modes contribute the required elec-
trical Hall conductance, and a thermal Hall conductance of
κxy = 3. The states differ by the number nM of neutral Ma-
jorana modes (negative numbers indicate upstream modes),
which determines the total thermal Hall conductance to be
κxy = 3 + nM/2. The values of nM for all relevant phases
are listed in Table I, and the edge modes of the non-Abelian
phases are depicted in Fig. 2. Notice that only PH-Pfaffian
(nM = −1) is compatible with PH-symmetry under which
κxy − κν=2

xy → 1− (κxy − κν=2
xy ), with κν=2

xy = 2. The corre-
sponding edge states can be succinctly expressed in terms of
their Lagrangian density Lχvac.-QH = Lχc + Lχn [nM ] with

Lχc =
1

4π

∑
ij

[χKij∂tφi∂xφj − Vij(∂xφi)(∂xφj)] ,

Lχn [nM ] =
∑|nM |

i=1
γi(∂t − χsgn(nM )v∂x)γi , (1)

TABLE I. Summary of ν ≈ 5/2 phases relevant for our discus-
sion. The number nM of Majorana modes determines the thermal
Hall conductance according to κxy = 3 + nM/2.

QH Phase Pfaffian K = 8 PH-Pfaffian (113) Anti-Pfaffian

nM 1 0 -1 -2 -3
κxy 7/2 3 5/2 2 3/2
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FIG. 2. Possible edge modes of three kinds of Pfaffian phases. All
three phases have identical charge modes, but differ in the number
and chirality of neutral Majorana modes (indicated by the number
and direction of arrows) and consequently in their thermal Hall con-
ductance.

sharply quantized to the values 3/2, 2, 5/2, 3, and 7/2. For
weak disorder the filling factor ν functions as a tuning param-
eter that drives the system across the four continuous quantum
phase transitions. For fixed ν but increasing strength of dis-
order, the system may transition into a thermal metal phase
[35–39] with non-quantized κxy .

Pfaffianology. Five candidate states for ν = 5
2 are rele-

vant to the present work, each hosting multiple edges modes
that interact among themselves. Beyond a length scale `eq
the edge modes reach mutual equilibrium, at which point the
state achieves a quantized thermal Hall conductance [40]. We
will henceforth assume that all relevant length scales exceed
`eq. (The values of `eq, as well as other microscopic length
scales, depend on non-universal properties and are hard to es-
timate. Fortunately, these values are not crucial to our main
results; we will return to this point after explaining the phase
diagram.)

All these states have two chiral (ν = 1) electron edge
modes of the two filled Landau levels, each contributing
σxy = 1 and carrying central charge c = 1, as well as one
co-propagating (ν = 1

2 ) charge mode contributing σxy = 1
2

and carrying c = 1; these modes contribute the required elec-
trical Hall conductance, as well as a thermal Hall conductance
of κxy = 3. The states differ by the number nM of neutral
Majorana modes (with a negative number indicating upstream
modes), which determines the total thermal Hall conductance
to be κxy = 3 + nM/2. The values of nM for all relevant
phases are listed in Table I, and the edge modes of the non-
Abelian phases are depicted in Fig. 2. Notice that only the
PH-Pfaffian (nM = −1) is compatible with PH-symmetry un-
der which κxy − κν=2

xy → 1− (κxy − κν=2
xy ), with κν=2

xy = 2.
The corresponding edge states can be succinctly expressed in
terms of their Lagrangian density Lχvac.-QH = Lχc + Lχn [nM ]
with

Lχc =
1

4π

∑
ij

[χKij∂tφi∂xφj − Vij(∂xφi)(∂xφj)] ,

Lχn [nM ] =
∑|nM |

i=1
γi(∂t − χsgn(nM )v∂x)γi , (1)

where φ are bosonic modes and γ are Majorana fermions; V
is positive definite, K = diag(1, 1, 2), v > 0 and χ = ±1

TABLE I. Summary of ν ≈ 5/2 phases relevant for our discus-
sion. The number nM of Majorana modes determines the thermal
Hall conductance according to κxy = 3 + nM/2.

QH Phase Pfaffian K = 8 PH-Pfaffian (113) Anti-Pfaffian

nM 1 0 -1 -2 -3
κxy 7/2 3 5/2 2 3/2
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FIG. 3. Microscopic puddles and schematic network model. (a)
Puddles of Anti-Pfaffian (of size ∼ ξ) embedded in a Pfaffian phase.
Each Pfaffian–Anti-Pfaffian boundary hosts four co-propagating Ma-
jorana fermions. (b) Adding a topologically trivial pair of counter-
propagating Majorana modes next to the sample boundary, followed
by suitable hybridization of counter-propagating modes results in the
PH-Pfaffian edge on top of a Chalker-Coddington model containing
four Majorana fermions.

(determining the chirality of the edge modes). An overview
of the various edge modes appears in [41] (see also Fig. 6 in
the extended material of [26]).

Disorder and network model. We consider a disorder po-
tential that is sufficiently weak and/or smooth that the results
of numerical studies apply locally and favor the formation of
Pfaffian or Anti-Pfaffian puddles, see Fig. 3 (a). The Pfaffian–
Anti-Pfaffian boundary is captured by [42]

LχPf.-APf. =Lχc + Lχn [1] + L−χc + L−χn [−3]. (2)

Notice that when the two quantum Hall states are separated
by vacuum, fractional excitations cannot tunnel between the
two. Still, the non-chiral Lagrangian of the charge modes
Lχc + L−χc can be gapped by sufficiently strong tunneling of
(pairs of) electrons across the Pfaffian–Anti-Pfaffian bound-
ary [42]. This ‘stitches together’ the two quantum Hall states
and permits fractional excitations to traverse between the two.
However, the neutral Majorana fermions co-propagate and
thus cannot be gapped out. Instead, the two neutral terms
in Eq. (2) combine into Lχn [4]. Consequently, the Pfaffian–
Anti-Pfaffian boundary is described by four co-propagating
Majorana fermions, which have an O(4) symmetry of rotat-
ing between them.

Our proposed model to describe a disordered ν = 5
2 system

may be viewed as a checkerboard of alternating Pfaffian and
Anti-Pfaffian states as shown in Fig. 3 (b), with random scat-
tering at each vertex. (This is a generalization of the Chalker-
Coddington network model, which has been highly successful
in describing integer-quantum Hall plateau transitions [43]).

FIG. 3. Microscopic puddles and schematic network model. (a)
Puddles of Anti-Pfaffian (of size ∼ ξ) embedded in a Pfaffian phase.
Each Pfaffian–Anti-Pfaffian boundary hosts four co-propagating Ma-
jorana fermions. (b) Adding a topologically trivial pair of counter-
propagating Majorana modes next to the sample boundary, followed
by suitable hybridization of counter-propagating modes results in the
PH-Pfaffian edge on top of a Chalker-Coddington model containing
four Majorana fermions.

where φ are bosonic modes and γ are Majorana fermions; V
is positive definite, K = diag(1, 1, 2), v > 0 and χ = ±1
(determining the chirality of the edge modes). An overview
of the various edge modes appears in [43] (see also Fig. 6 in
the extended material of [26]).

Disorder and network model. We consider a disorder po-
tential that is sufficiently weak and/or smooth that the results
of numerical studies apply locally and favor the formation of
Pfaffian or Anti-Pfaffian puddles, see Fig. 3 (a). The Pfaffian–
Anti-Pfaffian boundary is captured by [44]

LχPf.-APf. =Lχc + Lχn [1] + L−χc + L−χn [−3]. (2)

Notice that when two quantum Hall states are separated
by vacuum, fractional excitations cannot tunnel between the
two. Still, the non-chiral Lagrangian of the charge modes
Lχc + L−χc can be gapped by sufficiently strong tunneling of
(pairs of) electrons across the Pfaffian–Anti-Pfaffian bound-
ary [44]. This ‘stitches together’ the two quantum Hall states
and permits fractional excitations to traverse. However, the
neutral Majorana fermions co-propagate and thus cannot be
gapped out. Instead, the neutral terms in Eq. (2) combine into
Lχn [4]. Consequently, the Pfaffian–Anti-Pfaffian boundary is
described by four co-propagating Majorana fermions, which
have an O(4) symmetry of rotating between them.

Our proposed model to describe a disordered ν = 5
2 sys-

tem may be viewed as a checkerboard of alternating Pfaffian
and Anti-Pfaffian states as shown in Fig. 3 (b), with random
scattering at each vertex. (A generalization of the Chalker-
Coddington network model, which has been highly successful
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in describing integer-quantum Hall plateau transitions [45]).
To gain intuition for the underlying physics, we first an-

alyze the strongly anisotropic limit of the network model,
which consists of (narrow) infinite strips that alternate be-
tween Pfaffian and Anti-Pfaffian. A closely related model
was studied in [44], focusing on the composite Fermi liquid,
and in [31] and [46] to access the PH-Pfaffian phase in the
topological-insulator-surface and quantum-Hall contexts, re-
spectively. The low-energy properties of the model are en-
coded in Lanis =

∑
y

[
Ledge
y + Ltunnel

y

]
with

Ledge
y = ~γy · (∂t − (−1)yv∂x)~γi,y , (3)

Ltunnel
y = i~γy

[
M unif + (−1)yM stag +M rand

y (x)
]
~γy+1,

where ~γTy = (γ1,y, γ2,y, γ3,y, γ4,y) and y enumerates Pfaffian-
Anti-Pfaffian interfaces. Ltunnel

y is parameterized by three 4×4

matrices, describing uniform (M unif), staggered (M stag) and
random (M rand) tunneling terms. The O(4) symmetry of the
non-random network makesM unif proportional to the unit ma-
trix. When M rand = M stag = 0, Lanis features a discrete
translation symmetry and is readily diagonalized in momen-
tum space where one finds four gapless Majorana cones.

Perturbing these cones with a generic mass matrix M stag

opens an energy gap and the resulting phases can be classi-
fied according to the number of negative masses. A global
Anti-Pfaffian phase arises when all four cones are gapped by
tunneling across Pfaffian strips. We adopt the convention that
this corresponds to all Majorana masses being negative. When
M stag is O(4) symmetric, there is a direct transition between
Pfaffian and Anti-Pfaffian. Without this symmetry individual
masses can flip sign, each incrementing the total thermal Hall
conductance by ∆κxy = 1/2, thus realizing all phases in Ta-
ble I.

We note that a clean uniform system differs from Lanis

without disorder. The transition between Pfaffian and Anti-
Pfaffian is expected to be first order in the former, but con-
tinuous in the latter. Consequently, intermediate phases with
κxy = 2, 5/2, and 3 are more readily accessible in the network
model, by weakly perturbing the critical point. We expect this
distinction to become insignificant in the presence of disorder
where edge states between puddles necessitate closure of the
energy gap, and the uniform and anisotropic models to exhibit
the same universal behavior.

The key features of the anisotropic network model carry
over to the isotropic case. Being free-fermion systems with-
out charge conservation or any other symmetry, they fall into
class D in the Altland-Zirnbauer classification [47, 48]. In
two dimensions, this class is characterized by a Z topological
invariant nM whose integer value corresponds to a quantized
thermal Hall effect with κxy = nM/2 [49, 50]. Certain extra
symmetries, such as the O(4) symmetry in Eq. (3), can en-
sure transitions where κxy jumps by 2. However, this changes
when disorder respects the protecting symmetry only on av-
erage. Random scattering completely mixes the four species
of Majorana fermions and at large enough length scales, the

system is effectively comprised of a single species of Majo-
rana fermions. Without fine-tuning, such a system exhibits
phase transitions across which the thermal Hall conductance
changes by ∆κxy = 1/2 (and not by larger ∆κxy), leading
to the proposed phase diagram shown in Fig. 1. The behav-
ior around each of the four lines emanating from the transi-
tion point of the clean system was studied in [37–41]. We
note that the disorder-induced localized phases in Fig. 1 are
connectable to their clean analogues (113, PH-Pfaffian and
K = 8) without delocalization in the bulk. In contrast, the
bulk energy gap is not protected in the disordered system and
may close in this process, analogous to the case of the integer
quantum Hall effect.

The emergent splitting of symmetry-protected phase transi-
tions due to statistically symmetric disorder is familiar from
other contexts. One example is the integer quantum Hall
plateau transition between ν = 0 and ν = 2 of spin-
degenerate electrons with spin-orbit scattering [51]. The in-
troduction of spin-orbit scattering splits the single transition
across which the Hall conductance changes by ∆σxy = 2 e

2

h

into two transitions, each with ∆σxy = e2

h . A second exam-
ple is that of valley degenerate electrons in graphene, where
random inter-valley scattering splits the transition in a similar
fashion [52].

In addition to the localized phases with quantized κxy , a
thermal metal phase with non-quantized κxy can also arise
[37–41]. There are thus two scenarios for a disordered system
to transition between κxy = 7/2 (Pfaffian) and κxy = 3/2
(Anti-Pfaffian): (i) The Majorana fermions in the bulk remain
localized apart from sharp transitions with ∆κxy = 1/2 each,
or (ii) There is an intermediate delocalized phase and κxy
varies continuously. Which case is realized depends on the
type and strength of randomness, with an important role being
played by vortex disorder. Ascertaining the fate of a particu-
lar system requires a detailed microscopic analysis that we do
not attempt here. The experimental observation of a quantized
thermal Hall conductance supports the first scenario over the
second although it does not exclude the possibility of a metal-
lic bulk with longitudinal thermal conductance κxx � κxy .

To corroborate our scenario, we numerically studied
disorder-induced splitting of transitions between different
topological phases in two superconducting model systems:
a one-dimensional superconductor in class BDI and a two-
dimensional superconductor in class D [49, 50]. In the one-
dimensional case, we studied four identical Kitaev-chains un-
dergoing phase transitions between having and not having
Majorana zero modes at their ends. The O(4) symmetry in-
herent in this model ensures that a single transition, where the
topological invariant changes by four. Upon introducing dis-
order that preserves this O(4) symmetry only on average, we
observe numerically that the transition splits into a sequence
of four transitions (see also [53, 54]).

A two-dimensional system where symmetry ensures a four-
fold transition is a bilayer px + ipy superconductor transition-
ing into a px− ipy bilayer. This transition involves ∆nM = 2
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in each layer, so that in total ∆nM = 4. The transition is pro-
tected by layer-interchange and spatial rotation symmetries.
Again, we introduce statistically symmetric disorder and nu-
merically observe splitting of the transition into a sequence of
four transitions with ∆nM = 1 (See [55] for details).

We note that our model is based on a fully coherent net-
work. An incoherent mixture of puddles with two different
values of the electrical Hall conductances, exhibits the so-
called semicircle law [56], which states that for approximately
equal population of the phases, there is a large longitudinal
conductance of the order of the difference between the two
Hall conductances. We expect an analogous analysis for ther-
mal transport in an incoherent mixture to lead to a similar
law. This result is inconsistent with the observed plateau with
κxy = 5/2. Yet, it is possible that it would describes samples
of sizes larger than the coherence length.

We conclude our analysis of the network model by return-
ing to the question edge mode equilibration. Above, we al-
ways assumed that all edge modes are fully equilibrated at
the length scale ξ. When ξ < `eq., the same model can still
be used provided that puddles are interpreted as more coarse-
grained objects: at a scale larger than `eq. and ξ, one may
define the state of a ‘puddle’ of this size to be whichever state
is present in the majority.

Transmutation from Abelian to non-Abelian statistics. A
somewhat surprising outcome of our analysis is that puddles
of two non-Abelian phases may form a macroscopic Abelian
phase, and vice versa. On short length scales the quasipar-
ticles reflect the state of the microscopic puddle where they
reside. However, the topological properties of the macro-
scopic state can be inferred only from quasiparticles whose
separation significantly exceeds both the puddle size and the
localization length. Macroscopic degeneracy and non-Abelian
braiding exist when each bulk quasiparticle carries a localized
zero energy Majorana mode. In all the phases considered here,
quasiparticles may be viewed as vortices in class-D supercon-
ductors, each harboring nM mod 2 Majorana zero modes in
their cores. The microscopic value of this number (determined
by the puddle hosting the vortex) need not match the one of
the macroscopic state. In that case, the difference must be
made up by the effect of the vortex on the network of coupled
Majorana modes.

We illustrate the mechanism behind this in Fig. 4, start-
ing with puddles of two Abelian phases that form a macro-
scopic non-Abelian phase. Here, an e/4 excitation changes
the boundary conditions of the edge states to create a pair
of Majorana zero modes at the puddle boundary [cf. Fig. 4
(a)]. This pair of zero-modes is not protected and could thus
hybridize and gap out. However, when the microscopic pud-
dles of the two Abelian phases generate a macroscopic non-
Abelian phase, one of the zero transfers to the sample bound-
ary, leaving behind a single stable Majorana zero mode bound
to the e/4 excitation [cf. Fig. 4 (b) and (c)]. The comple-
mentary case of an Abelian phase arising from puddles of two
non-Abelian phases can be understood analogously; see [55]
for further details.

PH-Pfaffian
K=8 state

113 state

FIG. 4. Emergence of non-Abelian quasiparticles from puddles
of Abelian phases. (a) In the Abelian ‘host’ system, a fractional
charge e/4 is associated with a pair of Majorana zero modes, which
can hybridize with one another. (b) At the transition into the non-
Abelian phase, only one of the two Majorana fermions (along with
its zero-mode) delocalizes throughout the system. (c) In the non-
Abelian phase, the previously percolating Majorana fermion forms
an edge state at the outer sample boundary, while still carrying the
exact zero-energy mode.

Conclusions and outlook. We developed a model for a dis-
ordered system at ν ≈ 5

2 built from mesoscopic puddles of
Pfaffian and Anti-Pfaffian. We showed, using both numerical
and analytical arguments, that a plateau with κxy = 5/2 is sta-
bilized at sufficiently long distances. Our theory predicts that
for moderate disorder a series of phase transitions between
κxy values of 7/2 → 3 → 5/2 → 2 → 3/2 occurs with in-
creasing filling factor ν. The properties of the quasiparticles
at large distances, in particular their Abelian or non-Abelian
statistics, are determined by the macroscopic phase, and not
by the microscopic puddle in which they reside.

Experimental realization of the full series of transitions in
κxy depends on the width of the σxy = 5

2
e2

h plateau, which
is usually rather narrow. The widths of that plateau and of
each of the phases in Fig. 1 increase with disorder (at least
for weak disorder), but the scaling of their relative sizes is un-
known to us. However, for a mesoscopic system, there may
be an alternative route towards observing different quantiza-
tion of the thermal Hall conductance. The splitting of plateaus
only occurs beyond a crossover length scale, and smaller sys-
tems exhibit instead the thermal Hall conductance of Pfaffian
or Anti-Pfaffian. (A trivial example of this is a system con-
taining only a single puddle.) A systematic study of the ther-
mal Hall conductance as a function of sample size could thus
be used to test our theory, as well as determine the crossover
length scale.

Acknowledgments. Two upcoming works by D. Feldman
and by B. Halperin et al. [36] study disorder-based mecha-
nisms to explain the experimentally observed κxy . We thank
them for sharing their insights on this topic. We would also
like to thank Jason Alicea, Olexei Motrunich, Pavel Ostro-
vsky, Eran Sagi, Michael Zaletel and especially Mitali Baner-
jee for fruitful discussions. This work was performed in part at
the Aspen Center for Physics, which is supported by National
Science Foundation grant PHY-1607611 (DFM and YO) and
partially supported by a grant from the Simons Foundation
(DFM); the Israel Science Foundation (DFM, YO, AS, MH);
the Minerva foundation with funding from the Federal Ger-



5

man Ministry for Education and Research (DFM and MH); the
Binational Science Foundation (DFM and YO); the European
Research Council under the European Communitys Seventh
Framework Program (FP7/2007-2013)/ERC Grant agreement
No. 339070 (MH) and Project MUNATOP (YO and AS); Mi-
crosoft Station Q (AS); the DFG (CRC/Transregio 183, EI
519/7-1) (YO and AS); the German Israeli Foundation, grant
no. I-1241-303.10/2014 (MH).

[1] R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C.
Gossard, and J. H. English, Phys. Rev. Lett. 59, 1776 (1987).

[2] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[3] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[4] B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).
[5] M. Greiter, X. Wen, and F. Wilczek, Nuclear Physics B 374,

567 (1992).
[6] M. Levin, B. I. Halperin, and B. Rosenow, Phys. Rev. Lett. 99,

236806 (2007).
[7] S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Phys. Rev.

Lett. 99, 236807 (2007).
[8] A. Stern, Nature 464, 187 (2010).
[9] R. H. Morf, Phys. Rev. Lett. 80, 1505 (1998).

[10] E. H. Rezayi and F. D. M. Haldane, Phys. Rev. Lett. 84, 4685
(2000).

[11] M. R. Peterson, T. Jolicoeur, and S. Das Sarma, Phys. Rev.
Lett. 101, 016807 (2008).
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