
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topological Exciton Fermi Surfaces in Two-Component
Fractional Quantized Hall Insulators

Maissam Barkeshli, Chetan Nayak, Zlatko Papić, Andrea Young, and Michael Zaletel
Phys. Rev. Lett. 121, 026603 — Published  9 July 2018

DOI: 10.1103/PhysRevLett.121.026603

http://dx.doi.org/10.1103/PhysRevLett.121.026603


Topological exciton Fermi surfaces in two-component fractional quantized Hall insulators

Maissam Barkeshli,1, 2, 3 Chetan Nayak,4 Zlatko Papic,5 Andrea Young,6 and Michael Zaletel7, 4, 3

1Department of Physics, Condensed Matter Theory Center,
University of Maryland, College Park, Maryland 20742, USA

2Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California, 93106, USA

4Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
5School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom

6Department of Physics, University of California, Santa Barbara, California 93106-6105 USA
7Department of Physics, Princeton University, Princeton, NJ 08540, U.S.A.

A wide variety of two-dimensional electron systems (2DES) allow for independent control of the total and
relative charge density of two-component fractional quantum Hall (FQH) states. In particular, a recent experi-
ment on bilayer graphene (BLG) observed a continuous transition between a compressible and incompressible
phase at total filling νT = 1

2
as charge is transferred between the layers, with the remarkable property that the

incompressible phase has a finite interlayer polarizability. We argue that this occurs because the topological
order of νT = 1

2
systems supports a novel type of interlayer exciton that carries Fermi statistics. If the fermionic

excitons are lower in energy than the conventional bosonic excitons (i.e., electron-hole pairs), they can form an
emergent neutral Fermi surface, providing a possible explanation of an incompressible yet polarizable state at
νT = 1

2
. We perform exact diagonalization studies which demonstrate that fermionic excitons are indeed lower

in energy than bosonic excitons. This suggests that a “topological exciton metal” hidden inside a FQH insulator
may have been realized experimentally in BLG. We discuss several detection schemes by which the topological
exciton metal can be experimentally probed.

Two-component quantum Hall systems have long been
known to host rich phase diagrams, exhibiting intrinsically
two-component fractional quantum Hall (FQH) states, broken
symmetry states, and quantum phase transitions at fixed total
filling fraction νT [1–3]. When tunneling between the compo-
nents is effectively zero, the system acquires an enhanced total
and relativeU(1)T×U(1)r symmetry due to the independently
conserved charges of the two components. This situation is
most easily realized when the two components are related by
spin or valley symmetry [4–8], or in double layer systems in
which a barrier suppresses interlayer tunneling [9, 10].

A number of experimental platforms have been used to
study the resulting phase diagram of two component FQH
phases at νT = 1

2 , including wide quantum wells [11–
14], ZnO heterostructures [8, 15], and, most recently, bi-
layer graphene (BLG), where the two components correspond
to layer [16]. In many of these systems the relative filling
ν+ − ν− of the two components can be tuned in situ. In
particular, Ref. 16 has reported the remarkable experimental
observation of a BLG state at νT = 1

2 that is incompress-
ible, yet possesses a finite interlayer polarizability. This in-
sulating state persists over the range of interlayer polarization
ν+−ν− ≈ 0−0.18, which is strikingly large when compared
with the typical width of FQH plateaux. In the presence of
U(1)r, finite polarizability indicates a vanishing neutral gap,
and hence hints at the discovery of a new phase of matter dis-
tinct from a fully gapped quantized Hall state.

In this Letter we address this experimental finding by an-
alyzing the possible phases which can occur in a two com-
ponent system at νT = 1

2 as density is transferred between
the two components. The U(1)r symmetry ensures that inter-
component excitons can exist as long-lived excitations.We ar-
gue that the experimental observations of Ref. 16 could be

explained by a FQH insulator whose interlayer excitons have
delocalized into a degenerate quantum liquid.

The problem is particularly rich at νT = 1
2 because the frac-

tionalized nature of even-denominator FQH states guarantees
that in addition to the familiar bosonic exciton (b-Exc), the
system also hosts a topologically non-trivial fermionic exci-
ton (f-Exc). If the f-Exc is lower in energy, the system natu-
rally forms a “topological exciton metal” at finite f-Exc den-
sity. This new phase of matter would exhibit insulating charge
transport but metallic counterflow resistance.

We consider two main scenarios. First we discuss systems
in which the two components arise from a crossing between
an N = 0 and N = 1 LL in the limit where the distance
d between them is small compared to the magnetic length `B ,
as occurs in ZnO [8], wide quantum wells [12], and BLG [16].
Our exact diagonalization calculations show that the f-Exc is
indeed lower in energy than the b-Exc. In the second scenario,
relevant to a bilayer with d/`B & 1, we consider a crossing
of two N = 0 levels, where we also argue that the f-Exc will
determine the nature of the intermediate phase.

(N+, N−) = (1, 0): the Pfaffian exciton metal. In the
experiment of Ref. 16, an electric field perpendicular to the
bilayer causes the first excited N+ = 1 LL in the top layer
to cross in energy with the lowest N− = 0 LL in the bottom
layer. The filling fraction of the two layers is ν+ = 1/2−δ and
ν− = δ. BecauseN+ = 1, when δ = 0 the system is observed
to form an incompressible FQH state in the top layer, roughly
analogous to the 5/2-plateau of GaAs [17]. Based on nu-
merical evidence [16, 18], as well as the recent experimental
observation of a half-integer thermal Hall effect [19], we as-
sume that the system forms a Moore-Read Pfaffian state.[20]
However all even-denominator states must contain a charge
−e boson, so will lead to essentially the same conclusions.
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When δ = 1/2, the particles reside in an N− = 0 level, so the
system forms a compressible CFL [21–23].

What is the fate of the system at intermediate δ? As δ in-
creases from zero, the top layer loses charge to the bottom
layer. Due to the strong Coulomb interaction between lay-
ers, excitons will form, with −e charge in the top layer and e
charge in the bottom layer, with a binding energy on the order
of the interlayer Coulomb interaction. Crucially, at νT = 1

2
this system supports two topologically distinct types of ex-
citons. The conventional bosonic exciton (b-Exc) is formed
when an electron is transferred from the Pfaffian state in the
top layer to the bottom layer. On the other hand, the Pfaf-
fian state also has a charge −e bosonic excitation, which can
be thought of as a Laughlin quasiparticle associated with in-
serting two flux quanta into the system. A bound state of the
charge −e boson in the top Pfaffian layer and an electron in
the bottom is a fermionic exciton (f-Exc). In contrast to the
b-Exc, the f-Exc is a topologically non-trivial quasiparticle;
it can also be thought of as a bound state of the b-Exc and
the anyonic “neutral fermion” ψNF of the Pfaffian phase. As
we will demonstrate within the long wavelength effective field
theory, this f-Exc is coupled to an emergent Z2 gauge field. A
pair of f-Exc’s is topologically equivalent to a pair of b-Exc’s.

Because excitons are neutral particles, they have some non-
zero dispersion ε(k) and can delocalize. If the excitons at-
tract, there may be an instability and the transition will be
discontinuous, but otherwise we can consider three types of
ground states for the excitons: density-wave, condensate,
and metal.[24] First, depending on the interactions between
the excitons, it may be preferable for the excitons to form
a density-wave state, for example stripes or a Wigner crys-
tal. In the presence of weak disorder that pins the density
wave, this state can be viewed as a localized state of excitons,
e.g. a Bose glass or Anderson insulator for the b-Exc, f-Exc
respectively.[25, 26]

As the density of excitons increases with δ, the b-Exc can
potentially undergo a quantum phase transition to a superfluid,
spontaneously breaking U(1)r. Analogous to the νT = 1 ex-
citon condensate [2, 3], the condensation of the b-Exc leads
to an interlayer coherent Moore-Read Pfaffian state. Alter-
natively, if the f-Exc are more stable, increasing their density
leads to a Fermi surface whose volume is set by δ. In this case,
the Pfaffian state coexists with a Fermi surface of f-Exc’s,
leading to insulating charge transport but metallic counter-
flow. There is no sharp transition between the Anderson in-
sulator state and the “metallic’ state of excitons, because in
two dimensions all states are localized by disorder. At finite
temperature there is a crossover from the localized to delocal-
ized regime as the temperature is increased, with a crossover
temperature T ∗ ∼ e−εF /W , where εF is the Fermi energy and
W is the disorder strength.[26]

Let us now describe the above scenario more concretely in
terms of a long wavelength effective field theory. c+ and c−
denote the electrons in the two layers. To describe the system
at νT = 1/2, we attach two flux quanta to each electron, to
obtain composite fermions (CFs) ψ+ and ψ−. It is convenient

to describe this in terms of a parton construction (see e.g. [27])
c± = bψ±, where b is a charge-e boson and ψ+, ψ− are the
neutral CFs. b and ψ± carry charge 1 and −1, respectively,
under an internal emergent gauge field a, associated with the
phase rotations b → eiθb, ψ± → e−iθψ± which keep the
physical electron operator invariant. Introducing AT = A+ +
A− as an external probe gauge field for U(1)T, and Ar =
(A+ − A−)/2 as a probe gauge-field for the U(1)r, the ψ±
carry charge ±1/2 under Ar.

Next, we assume a mean-field ansatz where b forms a
bosonic ν = 1/2 Laughlin state, and 〈a〉 = 0. The result-
ing field theory can be written as

L = − 2

4π
ã∂ã+

1

2π
(a+AT)∂ã+ Lψ(ψ±, a, Ar). (1)

Here a∂a ≡ εµνλaµ∂νaλ, 1
2π ε

µνλ∂ν ãλ is the conserved
current for the b particles, and the first term on the RHS
above is the effective action for a bosonic 1/2 Laughlin FQH
state [28]:

Lψ =
∑
α=±

[ψ†α(i∂t + at + αAr;t/2)ψα

+
1

2mα
ψ†α(i∂i + ai + αAr;i/2)2ψα + · · · ], (2)

where · · · indicates higher order interactions among the CFs.
We can now consider a variety of possible mean-field states
for the CFs ψ±.

(1) Two-component composite Fermi liquid. Here, ψ± both
form a composite Fermi sea. This describes a CFL state
with two Fermi surfaces, with Fermi wave vectors kF± =
`−1
B

√
2ν±, where ν± is the electron filling in the two layers.

This phase is most natural when ν− ∼ 1/2.
(2) Z2 fractionalized exciton metal. We consider a state

where species ψ+ forms a paired state, 〈ψ+ψ+〉 6= 0, while
ψ− continues to form a Fermi surface with kF− = `−1

B

√
2ν−.

This breaks the U(1) gauge symmetry down to Z2, and the
Higgs mechanism sets a+Ar/2 = 0. In the limit ν− = 0, we
expect ψ+ forms a px+ ipy state since the system is described
by a Moore-Read Pfaffian state in the top layer [36] [29].

As ν− is increased, the system is described by a Pfaffian
state in ψ+ together with a Fermi sea of ψ−. Since we have
locked a = −Ar/2, Eq. (2) implies that ψ− effectively be-
comes coupled only to Ar, with unit charge. Physically, this
implies that ψ− is a fermion which carries a unit dipole mo-
ment perpendicular to the layers, and can thus be identified
with the f-Exc.

However, ψ− is still coupled to an emergent Z2 gauge field,
corresponding to the remnant of a after the pairing of the ψ+

fermions, reminiscent of the ‘orthogonal metal’ phase [30].
Importantly, the ψ+ and ψ− fermions are both coupled to this
Z2 gauge field, so are non-trivially entangled. In particular,
the f-Exc will acquire a π-phase upon encircling the Pfaffian’s
non-Abelian charge e/4 quasiparticle; hence the f-Exc will
see any localized ±e/4 quasiparticles pinned to the disorder
potential as sources of random π-flux.
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A model wave function for this state can be written as
follows: ΨexFS({zi, wa}) = PLLLψf-Exc({ra})

∏
a<b(wa −

wb)
2
∏
i,a(zi−wa)2Pf

(
1

zi−zj

)∏
i<j(zi−zj)2. Here z andw

are the complex coordinates of the electrons in the top and bot-
tom layers, respectively, with wa = ra;x + ira;y . ψf-Exc({ra})
is the wave function for the excitons, which can be taken to
be in a Fermi sea. PLLL denotes projection to the lowest LL.
While this wave function is written as if both layers are in the
lowest LL, it should be transposed to the case where the Pf
layer is in the first LL by acting with the LL raising operator
on each z-electron,

∏
i(∂zi −

zi
4`2B

).

(3) Interlayer coherent FQH states: exciton condensates.
Both ψ± CFs can form a paired state, 〈ψ+ψ+〉 6= 0,
〈ψ−ψ−〉 6= 0, which breaks U(1)r and gives interlayer co-
herence. These phases thus have a Goldstone mode and
superfluid-like counterflow. We further distinguish two cases:

(a) 〈ψ+ψ−〉 6= 0. In this case, since we also have
〈ψ+ψ+〉 6= 0, we can treat 〈ψ+ψ−〉 and 〈ψ†+ψ−〉 as equiv-
alent. Since ψ†+ψ− carries unit U(1)r charge, its expectation
value implies that the interlayer U(1)r is completely broken,
implying that the b-Exc form a condensate.

(b) 〈ψ+ψ−〉 = 0. In this case, pairs of the f-Exc have con-
densed, implying that the interlayer U(1)r is spontaneously
broken down to Z2. This leaves behind a mod-2 conservation
law for the exciton number. Since pairs of f-Exc are topologi-
cally equivalent to pairs of b-Exc, this state can also be viewed
as a state where pairs of b-Exc have condensed.

Note that in both case (a) and (b), we can further con-
sider various types of paired states for the ψ± fermions, e.g.,
whether they are weak or strong pairing superconductors [29].
Wave functions for these interlayer coherent FQH states can
be written as Ψ({xi, σi}) = Pf

[
gσiσj (ri − rj)

]∏
i<j(xi −

xj)
2, where xi is now the complex coordinate of the ith elec-

tron including both layers and σi = ± is its layer index.
gσiσj (ri − rj) is the pair wave function. For example, if we
take gσiσj (ri − rj) = ∆σσ′

xi−xj , this would correspond to the
case where 〈ψσ(k)ψσ′(−k)〉 = ∆σσ′(kx + iky).

(4) Pfaffian FQH states with localized excitons. Finally,
we can consider a state where ψ+ is paired, while the ψ−
fermions form a density wave state, or, in the presence of dis-
order, are localized. This is the state which, in the language
of excitons used earlier, corresponds to a Pfaffian FQH state
in one layer with some density of localized excitons. As ex-
plained above, this disordered state is not a sharply distinct
phase from the Z2 fractionalized exciton metal, but rather a
different regime of the same phase. The topological order of
such a state is simply that of the Pfaffian FQH state, regardless
of whether the b-Exc or f-Exc are lower in energy.

Exact diagonalization study of the Pfaffian’s exciton ener-
gies. While we have enumerated several possibilities, it is a
matter of microscopic energetics which will actually occur. A
comprehensive numerical investigation is presented in [Please
Add PRB], but here we address the most important question:
does the b-Exc, or f-Exc, have lower energy? We answer this
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FIG. 1: (a) Top panel shows the energy per electron E(N1 =
Ne, N0 = 0)/Ne → e0 when all electrons are in the N = 1 layer.
The odd-even effect [31] confirms that the Pfaffian ground state oc-
curs forNe-even, whileNe-odd corresponds to the ψNF excited state.
Extrapolating the energy difference in 1/Ne we obtain the neutral
fermion gap ∆NF ∼ 0.018. In the bottom panel, we transfer one
electron from the N = 1 to the N = 0 layer and measure the energy
relative to the vacuum, Eex(Ne) = E(Ne − 1, 1) − e0Ne. There
is again an odd-even effect, but reversed: the bosonic exciton (blue,
Ne = 2m) is considerably higher in energy than the fermionic ex-
citon (red, Ne = 2m + 1). (b) The f-Exc pair correlation function
between the N = 0, 1 layers, g01(r), shows that the electron and
hole bind together into an exciton of size ∼ 4`B .

question using exact diagonalization of the Coulomb Hamil-
tonian on a sphere, keeping both an N = 0 and N = 1 LL.

To explain the results in Fig. 1 we recall some facts about
the Pfaffian state on a sphere. The Pfaffian ground state oc-
curs when the number of electrons Ne and the number of flux
quanta Nφ satisfies Nφ = 2Ne − 5. When Ne is even, the
sphere has a unique, gapped ground state. In the top panel of
Fig. 1(a), we show the energy per electronE(N1 = Ne, N0 =
0)/Ne when all electrons are in the N = 1 layer. Calcula-
tions are done for the Coulomb interaction with energies ex-
pressed in units of e2/ε`B . Using standard finite-size correc-
tions [18, 32] and linear extrapolation in 1/Ne for Ne-even,
we find the thermodynamic vacuum energy per particle of the
Pfaffian to be e0 ≈ −0.365. However, when Ne is odd, there
is a dispersing band of low energy states [33, 34]. This can
be understood by appealing to the “superconducting” nature
of Pfaffian phase [29]: when the number of CFs is odd, one
CF must remain as an unpaired BdG quasiparticle, which is
precisely the neutral fermion ψNF excitation. By measuring
the ground state energy differences E(Ne)− e0Ne, where Ne
is odd and e0 is the energy per electron in the thermodynamic
limit (top panel in Fig. 1a), we estimate neutral fermion gap
∆NF ∼ 0.018, in line with earlier studies [33, 34].

A similar method can be used to measure the energy dif-
ference between the f-Exc and b-Exc, see bottom panel of
Fig. 1(a). Let E(N1, N0) be the ground state energy for
Ne = N1 + N0 electrons in the N = 1, 0 levels respectively,
keeping fixed the number of flux Nφ = 2Ne − 5. The b-Exc
occurs whenN0 = 1 andNe is even; in contrast, the f-Exc oc-
curs forN0 = 1 andNe is odd. We define the exciton energies
by subtracting off the Pfaffian’s extrapolated vacuum energy
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e0 [18, 32],

Eex(Ne) = E(Ne − 1, 1)− e0Ne. (3)

The exciton energyEex(Ne) also shows an odd-even effect,
Fig. 1(a), but in contrast to the vacuum, odd Ne (the f-Exc) is
now lower in energy by ∆b-Exc − ∆f-Exc & 0.02. Note that
since the b-Exc can decay into an f-Exc and a ψNF, we do not
expect to see a difference much greater than ∆NF ≈ 0.018,
though the energy of the metastable b-Exc may be larger.

To verify that the electron and hole are forming a tightly
bound exciton, we examine the inter-layer pair correlation
function in the f-Exc sector, g01(r) ≡ A〈〈n̂0(r)(n̂1(0) −
n̄1)〉〉, where n̄1 = Ne/A is the average density in the Pfaf-
fian ground state and A is the area of the sphere. The f-Exc
carries angular momentum L = 3/2, so the double brackets
denote an average over the L-multiplet. We subtract n̄1 so that
−
∫
d2rg01(r) = 1 can interpreted as the probability for the

electron and hole to be at distance r. As we see in Fig. 1(b),
they indeed bind together into an exciton of size ∼ 4`B .

In summary, exact diagonalization of the Coulomb Hamil-
tonian shows that as charge is transferred between layers the
electrons and holes form tightly bound excitons, and the non-
trivial f-Exc is the lowest energy exciton. At dilute exciton
densities this “single particle” energy will dominate over in-
teractions, indicating that a fermionic exciton metal is more
likely than a bosonic condensate.

A number of experimental signatures could be used to dis-
tinguish these scenarios:

Counterflow– Counterflow transport is a clear way to distin-
guish between localized Bose/Fermi excitons, interlayer co-
herent FQH states, and the exciton metal. Assuming the abil-
ity to independently contact the two layers, one can measure
the counterflow conductivity: jr = σrEr, where jr = j+ − j−
is the relative current and Er = E+ − E− is the difference in
electric field between the two layers. When 〈ψ+ψ+〉 6= 0, jr
is simply the current of the ψ− fermions. The DC “counter-
flow conductivity” σr will thus be zero, finite, or infinite, de-
pending on whether the b-Exc have Bose condensed, the f-Exc
have formed a Fermi sea (with temperature T greater than the
localization cross-over scale), or the excitons have localized.
A dissipative counterflow conductivity, in an incompressible
FQH insulator, is a striking property of the exciton metal state.

Polarizability– The polarizability is defined as
limω→0,q→0〈p(q, ω)p(−q,−ω)〉, where p(x, t) =
n+(x, t) − n−(x, t) is the difference in density between
the two components. All states considered above have finite
polarizability. When the excitons are localized by disorder in
either the bosonic or fermionic case, the polarizability is set
by the disorder strength; in the Bose exciton condensate state
it is set by the superfluid density, and in the exciton Fermi sea
it is set by the density of states at the Fermi surface. The latter
can be understood within the field theory presented above: if
〈ψ+ψ+〉 6= 0, then ψ− is a f-Exc, p ∼ ψ†−ψ− + const, and
polarizability is simply the compressibility of the f-Exc state.
The exciton Fermi sea can be distinguished the temperature
dependence of the polarizability or by the application of

a periodic potential: when the wave vector of the periodic
potential becomes commensurate with 2kF , Bragg scattering
induces an exciton band gap and modulates the polarizability.

Specific heat and thermal conductivity – Another character-
istic distinguishing feature of the different exciton states ap-
pears in the specific heat and the thermal conductivity. The
thermal conductivity of the exciton metal will be linear in
temperature: κ ∼ CvvF ` ∼ T , where ` is the mean free
path of the excitons, vF is their Fermi velocity, and Cv ∼ T
is the specific heat of the exciton Fermi surface. Since such
a state has zero electrical conductivity at zero temperature,
this would imply an infinite violation of the Wiedemann-Franz
law. In contrast, the thermal conductivity of the exciton local-
ized state κ → 0 at zero temperature, although the specific
heat is still expected to be linear in T in this phase.

(N+, N−) = (0, 0): (331) fractional exciton metal. We
mention an alternative platform for an exciton metal. In QH
bilayers with d/lB > 1 at filling (ν+, ν−) = (1/4, 1/4)
the bilayer can form a 331 state. This state has been ob-
served when both components partially fill the N± = 0
LL,[3] though it may happen more generally. What is the
fate of the system in the intermediate regime (ν+, ν−) =
(1/4 + δ, 1/4 − δ)? The 331 state also possesses an f-Exc,
which contains charge e/2 and −e/2 in the two layers. This
is quite distinct from the scenario considered earlier, where
the f-Exc in the Pfaffian state contained charge e and −e in
the two layers. Since the b-Exc has charge e and−e while the
f-Exc has charge e/2 and −e/2, we expect that the Coulomb
repulsion would cause the b-Exc to be unstable to decaying
into two f-Exc’s. As δ is tuned away from zero, the finite den-
sity of f-Exc’s can form a Fermi sea.
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