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We show that novel low temperature properties of bulk SmB6, including the sudden growth of
the de Haas-van Alphen amplitude (and heat capacity) at millikelvin temperatures and a previously
unreported linear-in-temperature bulk electrical conductivity at liquid helium temperatures, signal
the presence of a highly asymmetric nodal semimetal. We show that a highly asymmetric nodal
semimetal is also a predicted property of the Kondo lattice model (with dispersionless f -electron
levels) in the presence of Sm vacancies or other defects. We show it can result from a topological
transformation of the type recently considered by Shen and Fu, and eliminates the necessity of a
neutral Fermi surface for explaining bulk dHvA oscillations in SmB6.

There is growing interest in the suggestion that cer-
tain members of the family of Kondo insulating com-
pounds exhibit a strongly correlated topological insulat-
ing state,1–3 with electrical conduction taking place pre-
dominantly via the surface at low temperatures.4,5 While
the discovery of the de Haas-van Alphen (dHvA) effect in
SmB6 was widely considered to confirm the existence of
pristine topologically protected surface metallic states,6,7

the cleanliness of the surface states has been brought into
question by the absence of Shubnikov-de Haas oscillations
in the surface-dominated resistance.8 In another set of
experiments,9,10 dHvA oscillations are reported to have
the characteristic magnetic field angular-dependence of a
bulk three-dimensional Fermi surface, leading to specu-
lation over the possibility of the dHvA originating from
novel neutral quasiparticles.11–14 Various alternative yet
more conventional explanations for the dHvA oscillations
have also been proposed.15–19 A common feature of all
the proposed models, however, whether based on neutral
or conventional quasiparticles, is that they appear un-
able to account the sudden growth of the dHvA ampli-
tude at millikelvin temperatures originating from a three-
dimensional Fermi surface.10

In this paper, we present arguments for a highly asym-
metric nodal semimetal existing over certain regions
of momentum-space in bulk SmB6, where the node is
pinned to the unhybridized f -level. Our proposal is moti-
vated by two recent experimental observations. The first
is our finding that the dHvA effect10 in SmB6 is consis-
tent with two channels of identical frequency and similar
mobility, but vastly different effective masses. One of the
channels is of light conduction electron character while
the other is of heavy f -electron character (see Fig. 1a).
The second experimental observation is that the nonsatu-
rating behavior of the resistivity plateau at liquid helium
temperatures is caused by a bulk linear-in-temperature T
contribution to the electrical conductivity (see Fig. 1b).
We attribute the linear-in-T conductivity, which is evi-
dent in published data from both floating zone20 and flux
growth samples,21,22 to the thermal activation of uniform
mobility carriers across the node. We propose the nodal
semimetal to originate from defects in the crystalline lat-
tice, such as Sm vacancies.23

The experimental evidence for a linear-in-T bulk con-
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FIG. 1: (a), Temperature-dependent amplitude of the 330 T
dHvA frequency in SmB6 (black circles) together with a
fit (blue line) to AdHvA(T ) = AcRT,c + AfRT,f , in which
RT,c = Xc/ sinhXc and RT,f = Xf/ sinhXf are the ther-
mal damping factors, Xc = 2π2m∗ckBT/~eB and Xf =
2π2m∗fkBT/~eB, showing it to stem from the superposition
of conduction electron-like and f -electron-like channels with
effective masses m∗c and m∗f , respectively. The inset shows
the same fit with a logarithmic T axis. (b) Collapsed curves
of the low T region of the bulk conductance of SmB6 inferred
from Fig. 2c, after subtracting the surface contribution σsurf

from each curve, with a dotted line extending to T = 0 added
as a guide to the eye. The inset shows similar collapsed curves
from Fig. 2b.

tribution to the electrical resistivity is presented in
Figs. 1b and 2, where we have used a reciprocal resistivity
scale in order to display the resistivity in a manner that
is proportional to conductivity. Figure 2a shows the re-
sistivity of a floating zone grown sample20 while Figs. 2b
and c show multiple curves of the resistance measured on
flux grown samples where only the surface contribution
changes between vertically separated curves. A change in
the relative surface conduction is achieved in Fig. 2b by
progressively reducing the sample thickness and rescaling
the data at 20 K (where it is bulk-dominated,21 there-
fore making the bulk contributions the same) while this
is achieved in Fig. 2c by progressively increasing the
depth of surface radiation damage.22 The simple man-
ner in which the curves are vertically offset means that
the conductance is dominated by a surface contribution
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FIG. 2: (a), T -dependence of the electrical resistivity of SmB6

grown using the floating zone technique20 together with a fit
to Equation (1) below ≈ 4 K. (b), T -dependent resistance
(with reciprocal scaling) of flux grown SmB6 crystals of dif-
ferent thicknesses rescaled so that their bulk-dominated resis-
tances are the same at 20 K,21 showing that snodeT is invari-
ant to thickness, indicating it to be of bulk origin. The black
lines are given by Equation (1) in which σsurf is adjusted
to accommodate different sample thicknesses while snode is
held constant. (c), Similar plot in which the surface of flux
grown SmB6 is radiation damaged to different depths (num-
bers shown for two faces),22 revealing that the surface contri-
bution σsurf is significantly impacted while snodeT is invariant,
again indicating snodeT to be of bulk origin.

σsurf that is largely independent of T , thus confirming
the conclusions reached in Refs..21,22 The new observa-
tion we make here is that the slope within the plateau
region is invariant to changes in the surface conductance,
revealing it to be of bulk origin. The low temperature re-
sistivity therefore has the approximate form

ρ(T ) ≈ 1

σsurf + snodeT
, (1)

which we verify in Fig. 2 by performing fits (black lines)
in which snode is held constant within each of the panels
(a, b and c).

We further show how a highly asymmetric nodal
semimetal can be a predicted property of a Kondo lat-
tice in the presence of Sm vacancies (or other defects),
which have been reported to exist at high concentrations
in floating zone growth samples.23 In the classic Kondo
lattice picture, the f -electron levels start out as being
strictly dispersionless (i.e. εf = 0) and acquire dispersion
only upon hybridization with conduction bands.24 The
immobility of the unhybridized f -electrons implies that
elastic scattering is expected to result exclusively from
interactions between conduction electrons and defects.
The corresponding energy level broadening is therefore

Γ0 = ~|v0|
λ , where λ is a semiclassical mean free path

and v0 = ~−1∂εk/∂k is the Fermi velocity of the unhy-
bridized conduction electron band. We proceed to obtain
asymmetric nodal semimetal under these considerations
by adapting the treatment recently introduced by Shen
and Fu19 to the Kondo lattice scenario. We neglect any
contributions to the energy broadening that are common

to both εf and εk.25

To simplify the derivation of the nodal semimetal, we
approximate the unhybridized conduction electron band
using a parabolic function

εk =
~2k2

2m∗0
− ε0, (2)

where ε0 = 2e~F0/m
∗
0 is defined in terms of the quan-

tum oscillation frequency F0 and the effective mass m∗0
that have been extracted from fits to the dHvA oscilla-
tions at temperatures T > 1 K.10 After Shen and Fu,19

hybridization yields two bands

ε±k − iΓ
±
k =

1

2
(εk +εf − iΓ0)±

√
1

4
(εk − εf − iΓ0)2 + V 2,

(3)
which can be separated into real and imaginary com-
ponents, ε±k and Γ±k , respectively. When Γ0 � 2V ,
Equation (3) produces the classic dispersion of a Kondo
insulator with a gap at the chemical potential (see
Fig. 3a). Here, we define the hybridization potential

V =

√
(∆ε+ ε0

2 )2 − ε20
4 in terms of the gap ∆ε reported

in low temperature transport and point contact spec-
troscopy measurements.26,27
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FIG. 3: (a), The real component of the reconstructed elec-
tronic dispersion εk for F0 = 330 T and m∗0 ≈ 0.18 me

(where me is the free electron mass), as for the small ρ el-
lipsoids in SmB6,10 for which we have v0 ≈ 640,000 ms−1,
k0 ≈ 1.00 × 109m−1 and ε0 ≈ 21 meV. We use ∆ε = 2 meV,26

and λ = 800 Å, which yields Γ0 = ~|v0|
λ

≈ 5.3 meV. (b), An
expanded view of the electronic dispersion for the same F , m∗

and ∆ε, but for different values of λ. λ = 800 Å corresponds
to the situation in which Γ0 � 2V , λ = 120 Å corresponds to
the situation in which Γ0 . 2V , λ = 80 Å corresponds to the
situation in which Γ0 & 2V , and λ = 40 Å corresponds to the
situation in which Γ0 � 2V .

For Γ0 . 2V , the imaginary term leads to a small re-
duction in the Kondo insulator gap (see Fig. 3b). When
Γ0 and 2V become comparable in magnitude, however, a
significant funnel-shaped depression in the gap emerges
at k = ±k0 in Fig. 3b. Once Γ0 ≥ 2V , the sys-
tem undergoes a topological transformation into a nodal
semimetal.19 In this limit, Γ0 overwhelms the Kondo in-
sulator hybridization, causing the electronic dispersion to
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become gapless (see Fig. 3b). In the vicinity of k = ±k0,
the expansion of Equation (3) into real and imaginary
components is trivial. The real components can be be
expanded relative to |k| − k0, so that the electronic dis-
persion consists of two hybridized bands

ε̃k,c = ṽc(|k| − k0) + cc(|k| − k0)3 + . . .

ε̃k,f = ṽf (|k| − k0) + cf (|k| − k0)3 + . . . (4)

pinned to εf , where

ṽc =
∂ε+k
~∂k

∣∣∣∣
k=k0

=
v0
2

[
1 +

Γ0√
Γ2
0 − 4V 2

]
ṽf =

∂ε−k
~∂k

∣∣∣∣
k=k0

=
v0
2

[
1− Γ0√

Γ2
0 − 4V 2

]
(5)

are the Fermi velocities at k = ±k0 (of opposite sign)
and cc and cf are higher order terms. The subscripts c
and f refer to each of the bands being primarily of un-
hybridized conduction electron and f -electron character,
respectively. For the imaginary components, we obtain

Γ̃c =
Γ0

2
+

√
Γ2
0 − 4V 2

2

Γ̃f =
Γ0

2
−
√

Γ2
0 − 4V 2

2
(6)

at k = ±k0.
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FIG. 4: (a), The real component of the reconstructed elec-
tronic dispersion εk for the small ρ ellipsoids in SmB6,10

using ∆ε = 2 meV26 and λ = 80 Å, which yields Γ0 =
~|v0|
λ

≈ 53 meV. (b), The imaginary contribution for

λ = 80 Å. Vertical dotted lines indicate the values of k (as-
suming circular geometry) at which Landau levels intersect ε±k

and Γ±k at B = 31.4 T, given by all values of k =
√

2eB
~ (ν + 1

2
)

for which ν is an integer.

A peculiar consequence of the dispersion and defect
scattering originating solely from the unhybridized con-
duction electron band is that the mobility

µ∗ =
eτf
m∗f
≡ eτc
m∗c

=
ev0

k0
√

Γ2
0 − 4V 2

. (7)

is uniform with respect to the hybridized c and f bands at
k = ±k0, with the relaxation times and effective masses

being given by τc = ~/Γ̃c and τf = ~/Γ̃f , and m∗c =
~k0/|ṽc| and m∗f = ~k0/|ṽf |, respectively. The uniform
mobility has interesting implications for the behavior of
SmB6 at low temperatures.

In the case of the dHvA effect, the different Fermi ve-
locities in Fig. 4 implies that the dHvA effect is the sum
of two components with identical frequencies F0 but very
different effective masses, m∗c and m∗f , which become

m∗c ≈ m0 and m∗f ≈ m0(Γ0/V )2

in the limit Γ0 � 2V , meaning that m∗f � m∗c . The
heavier fitted effective mass in Fig. 1a corresponds to
Γ0/V ≈ 13 at high magnetic fields, which suggests an
upper bound of V ∼ 4 meV for the hybridization poten-
tial in the vicinity of the small ρ ellipsoids reported in
SmB6

9,10 (given that Γ0 must be of order 50 meV or less
in order for dHvA oscillations to be observable). Since
the exponent (π/µ∗B) of the Dingle damping term (asso-
ciated with scattering from defects) is proportional to the
inverse mobility, the uniform mobility implies that the
amplitudes of the two channels will be of similar order at
low temperatures. A slightly larger magnitude for the f -
electron branch may be the consequence of partially filled
Landau levels away from the chemical potential with less
broadening contributing to the dHvA effect, reflecting
the fact that Γ̃k,f drops once k 6= ±k0 (see Fig. 4b) while

Γ̃k,c increases.
The observability of quantum oscillations requires

2V ≤ Γ0 . ~ωc, which is easily realized for the small ρ el-
lipsoids but not so easily realized for the large α ellipsoids
owing to their smaller ~ωc. On the other hand, dHvA os-
cillations from larger sections of Fermi surface have only
been observed once.9 In the present model, the obser-
vation of α ellipsoid dHvA becomes possible only under
extremely fortuitous circumstances in which Γ0 ≈ 2V in
Equation (7).

In the case of the electrical transport, the conductivity
is that of a nodal semimetal, which implies possible sim-
ilarities to that of a line-node semimetal.29 In SmB6, the
excited carriers reside on a thin k-space film of area Sk
that encompasses the Fermi surface of the original unhy-
bridized conduction electron band wherever the inequal-
ity Γ0 ≥ 2V is satisfied. If the density of defects (e.g. Sm
vacancies) is nonuniform, then the extreme sensitivity of
the bulk conductivity to Γ0/V (becoming conducting for
Γ0 > 2V and insulating for Γ0 < 2V ) implies that the
total resistivity could be of a highly percolative nature.
In the case of a uniform density, however, we can proceed
to calculate the conductivity using a simple Drude pic-
ture. In this case, the low temperature bulk conductivity
is given by

σxx,bulk = neµ∗ = snodeT and σxy,bulk = 0, (8)

where µ∗ is the uniform mobility given by Equation (7),

n = 2

∫ ∞
0

f ′(ε)D(ε)εdε =
ln 2 Sk
4π3~v0

Γ0

√
Γ2
0 − V 2

V 2
kBT

(9)
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is the density of electrons plus holes thermally excited
across the node, f ′(ε) is the derivative of the Fermi-Dirac
function and

D(ε) =
Sk

4π3~

(
1

|vc|
+

1

|vf |

)
=

Sk
4π3~v0

Γ0

√
Γ2
0 − V 2

V 2

(10)
is the electronic density-of-states (taking into considera-
tion the asymmetry of the node). From this we obtain

snode =
ln 2 e2Sk
4π3~k0

Γ0

V 2
kB. (11)

The central prediction of the nodal semimetal, therefore,
is that the bulk conductivity has a linear dependence
on temperature – a similar temperature-dependence hav-
ing been predicted for the line-node semimetal29 – and
that the bulk Hall conductivity vanishes – which ap-
pears to have already been indicated in sample thickness-
dependent experiments.4 As T is increased, the outer
flanks of f ′(ε) eventually reach the bottom of the con-
duction band (k = 0) and top of the valence band
(|k| > 2 nm−1) in Fig. 3a. The very large electronic
density of states at these points is likely to be primarily
responsible for the thermally activated contribution to
the electrical conductivity [not included in Equation (1)]
that dominates the Kondo insulating state at high T .
Since εk and εf are vastly different in energy at k = 0
and |k| > 2 nm−1, the high temperature thermally ac-
tivated behavior of the Kondo insulator is not expected
to be significantly impacted by the formation of a nodal
semimetal.

The fitted magnitude of the linear-in-T conductivity is
found to be strongly sample-dependent in Fig. 2, yield-
ing snode ≈ 0.17, 0.0028 and 0.43 Ω−1m−1K−1 for the
samples in panels a, b and c, respectively. On consid-
ering this spread of values together with Γ0 = 53 meV
and different values of the ratio Γ0/V ranging from 2 to
13, we find the fitted snode in Fig. 2a to be consistent
with a k-space area Sk ranging between 4 × 1014 m−2

and 3 × 1018 m−2. The upper end of this range is sim-
ilar to the cross-sectional area of one of the ρ ellipsoids
in SmB6. The highly elongated shape of the ρ ellipsoids
in SmB6 implies that v0 and hence Γ0 are ≈ 2.4 times
smaller around the belly of the ellipsoids than at the tips,
which means that the nodal semimetal will initially form
around the belly. Angle-dependent dHvA m∗f measure-
ments could be used to investigate how far such a nodal

semimetal extends in k-space away from the belly regions.

Heat capacity measurements have suggested that the
low temperature heat capacity of SmB6 increases with
the concentration of Sm vacancies.23 If this is confirmed
to be a general trend, then it means that there should
be a concomitant increase in snode and, perhaps, also
AdHvA in Fig. 1a. In addition to producing a very heavy
effective mass component, a very large Γ0 causes the re-
constructed f -band in Fig. 3b to become very narrow,
potentially providing an explanation for the upturn in
the electronic heat capacity at low temperatures.10 Con-
versely, a nodal semimetal is not expected to occur in a
perfectly stoichiometric defect-free sample,30 which could
be verified by the vanishing of snode in such samples.

Dingle plots, in which the logarithm of the dHvA am-
plitude is plotted versus 1/B,28 provide a possible means
for isolating the mobilities of the heavy and light carriers.
The slope of the Dingle plot is −π/µ∗, which means that
of the slopes of the f -electron-dominated Dingle plot at
dilution fridge temperatures and the conduction electron-
dominated Dingle plot at T & 1 K should be the same.

In summary, we propose a highly asymmetric nodal
semimetal to exist over certain regions of momentum-
space of bulk SmB6, which we show to be supported by
recent experimental data. The first is that the dHvA
amplitude10 is consistent with two channels of identical
frequency and similar mobility, but vastly different ef-
fective masses, m∗c ≈ 0.18 me and m∗f ≈ 30 me. The
second is a bulk linear-in-temperature T contribution
to the electrical conductivity evident in the nonsaturat-
ing behavior of the resistivity plateau at liquid helium
temperatures.20–22 We show that these observations can
be qualitatively understood by considering the effect of
lattice defects on the Kondo lattice model, to which we
adapt a theoretical treatment recently developed by Shen
and Fu.19 A strong possibility, therefore, is that the nodal
semimetal is caused by defects in the crystalline lattice,
such as those arising from Sm vacancies.23 The existence
of a nodal semimetal does not exclude other conventional
quasiparticle origins of the dHvA over other regions of
k-space.15–17,19 It does, however, cast doubt over the ne-
cessity of a neutral Fermi surface.10

This work was supported by the US Department of
Energy “Science of 100 tesla” BES program. The author
acknowledges insightful discussions with Arkhady Shek-
ter, Ross McDonald and Priscila Rosa.

1 M. Dzero, K. Sun, V. Galitski, P. Coleman, Phys. Rev.
Lett. 104, 106408 (2010).

2 T. Takimoto, J. of the Phys. Soc. of Japan 80, 123710
(2011).

3 M. Dzero, J. Xia, V. Galitski, P. Coleman, Annual Review
of Condensed Matter Physics 7, 249-280 (2016).

4 D. Kim et al., Scientific Reports 3, 3150 (2013).

5 S. Wolgast et al., Phys. Rev. B 88, 180405 (2013).
6 Li, G. et al. Science 346, 1208-1212 (2014).
7 Z. Xiang it et al., Phys. Rev. X 7, 031054 (2017).
8 S. Wolgast et al., Phys. Rev. B 92, 115110 (2015).
9 B. S. Tan et al., Science 349, 287-290 (2015).

10 M. Hartstein et al., Nature Phys. 14, 166-172 (2018).
11 Y. Kagan, K. Kikion, N. Prokof’ev, Physica B: Condensed



5

Matter 182, 201-208 (1992).
12 D. Chowdhury, I. Sodermann, T. Senthil, arXiv preprint

arXiv:1706.00418 (2017).
13 P. Coleman, E. Miranda, A. Tsvelik, Physica B: Condensed

Matter 186, 362-364 (1993).
14 G. Baskaran, arXiv preprint arXiv:1507.03477 (2015).
15 J. Knolle, N. R. Cooper, Phys. Rev. Lett. 115, 146401

(2015).
16 O. Erten, P. Ghaemi, P. Coleman, Phys. Rev. Lett. 116,

046403 (2016).
17 L. Zhang, X.-Y. Song, F. Wang, Phys. Rev. Lett. 116,

046404 (2016).
18 P. Ram, B. Kumar, Phys. Rev. B 96, 075115 (2017).
19 H. Shen, L. Fu, arXiv preprint arXiv:1802.03023 (2018).
20 M. Ciomaga Hatnean et al., Scientific Rep. 3, 3071 (2013).

21 P. Syers et al., Phys. Rev. Lett. 114, 096601 (2015).
22 N. Wakeham et al., Phys. Rev. B 91, 085107 (2015).
23 M. E. Valentine et al., arXiv preprint arXiv:1712.01325

(2017).
24 R. M. Martin, J. W. Allen, J. Appl. Phys. 50, 7561 (1979).
25 Such a contribution survives the hybridization unaltered,

thereby not contributing to the nodal semimetal.19
26 M. Shahrokhvand et al., Phys. Rev. B 96, 205125 (2017).
27 K Flachbart et al., Phys. Rev. B 64, 085104 (2001).
28 D. Shoenberg, Magnetic Oscillations in Metals (Cambridge

University Press, 1984).
29 J. P. Carbotte, J. Phys. Cond.: Matt. 29, 045301 (2017).
30 Y. S. Eo et al. arXiv preprint arXiv:1803.00959 (2018).


