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We study theoretically the nonreciprocal charge transport in two-dimensional noncentrosymmetric supercon-

ductors with Rashba spin–orbit interaction. The resistivity R depends on the current I linearly under the external

magnetic field B, i.e., R = R0 (1 + γBI), which is called the magnetochiral anisotropy (MCA). It is found that

the coefficient γ is gigantically enhanced by the superconducting fluctuation with the components of both spin

singlet and triplet pairings, compared with that in the normal state. This finding offers a method to quantitatively

estimate the ratio of the pairing interactions between the singlet and triplet channels including its sign.

The broken inversion symmetry P is expected to result in

the directional nonreciprocal responses. For example, the

propagation of light through the matter can be different de-

pending on the direction. However, Onsager’s reciprocal the-

orem [1], which originates from the time-reversal symmetry

T of the microscopic dynamics, puts the constraint on the lin-

ear response functionKαβ describing the response of α to the

input β as

Kαβ(q, ω,B) = εαεβKβα(−q, ω,−B), (1)

where B is the magnetic field representing the T -breaking,

εα(= ±1) (εβ) is the even/odd nature of α (β) with respect to

T , and q, and ω is the wavevector and frequency of the physi-

cal quantities α and β. An example is the case where α and β
are the same component of the current, andKαβ describes the

diagonal element of the dielectric function. Therefore, only

with the broken T -symmetry propagation of light between q
and −q, called directional dichroism, becomes possible [2].

On the other hand, the nonlinear nonreciprocal responses

in the transport phenomena are characterized by the current-

dependent resistivity R expressed as

R = R0 (1 + γBI) , (2)

where I is the current, B is the magnetic field, and γ rep-

resents the nonreciprocity [3–8]. This means the nonlinear

I-V characteristics are asymmetric between the positive and

negative sign of I , i.e., the directional revistivity, called mag-

netochiral anisotropy (MCA) [3]. When the T -symmetry is

intact, the electronic dispersion εσ(k) (k: crystal momen-

tum, σ: spin) has the symmetry between k and −k, i.e.,

εσ(k) = ε−σ(−k). Therefore, the magnetic field B, which

breaks T -symmetry, is necessary in addition to P -breaking

to induce the asymmetric energy dispersion and hence I-V
characteristics as shown in Eq. (2). Microscopically, both

the spin–orbit interaction λ and the Zeeman effect µBB are

needed to make the energy dispersion asymmetric, which are

usually small perturbations compared with the kinetic energy

of electrons, i.e. the Fermi energyEF. Therefore, the strength

γ of MCA in Eq. (2) is usually very tiny because its expres-

sion contains the small factors of λ/EF and µBB/EF.

The superconductivity in noncentrosymmetric systems

changes this situation. The superconductivity changes the

transport phenomena within the narrow low energy window

below the superconducting gap ∆ or at low temperatures

around and below the mean field transition temperature Tc ∼=
∆/kB. The conductivity due to the fluctuating superconduct-

ing order parameter, i.e., paraconductivity, aboveTc shows the

enhanced nonreciprocal transport as shown experimentally in

MoS2 [9]. It has been analyzed theoretically in terms of the

time-dependent Ginzburg–Landau (GL) theory, and the en-

hancement of γ compared with that in the normal state γN
is estimated as γ/γN ∼ (EF/∆)3 [9]. This means that MCA

provides a useful information about the electronic states and

superconductivity of noncentrosymmetric materials. In the

case of MoS2 with the out-of-plane magnetic field, the trigo-

nal warping of the band structure leads to the third order terms

in the wavenumber of order parameter, which is identified as

the main mechanism of MCA.

In this paper, we study the MCA of two-dimensional su-

perconductors with Rashba spin–orbit interaction in the tem-

perature regime slightly above Tc, where the current is mainly

carried by thermal fluctuation of the superconducting order

parameter [10, 11]. The most essential aspect of the non-

centrosymmetric superconductivity is the mixing of the spin-

singlet even parity and spin-triplet odd parity pairings [12–

16]. One of the consequence of this is the very large upper

critical magnetic field Bc2 beyond the Pauli limit. As we will

show below, the noncentrosymmetric superconductors with

Rashba spin–orbit interaction as given by Eq. (3) shows the

nonreciprocal charge transport, which is very sensitive to the

pairing interactions for singlet and triplet channels as shown

in Eq. (19). Namely, once the Fermi energy EF, the strength

of the Rashba interaction and Tc are known, one can estimate

the ratio of the pairing interactions between the singlet and

triplet channels, i.e., rs or rt, including its sign. Note also

here that the third order terms in the wavenumber of the order

parameter, which was the main origin of γ for MoS2, is esti-

mated to be much smaller in the present case as indicated by

Eq. (22) below. We also show that the nonreciprocal current

has a unique electric and magnetic fields angle dependence

due to the symmetry constraints for the higher rank response

tensor as shown in Figs. 1 and 2.

Before defining the Hamiltonian, we discuss the general

form of the spin–orbit interaction in time-reversal preserved

systems. If we express the spin–orbit interaction as gk · σ,

time-reversal symmetry requires gk = −g−k. In this pa-
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per, we assume the simplest Rashba spin–orbit interaction,

although the other forms will give the qualitatively same con-

clusions.

We start with the Rashba Hamiltonian which is given by [8]

Hk = ξk + α (kxσy − kyσx)− µBB · σ, (3)

where ξk = ~
2k2

2m − EF is the dispersion without the spin–

orbit interaction, α is the Rashba parameter, B is the in-plane

magnetic field, and σ is the Pauli matrix. We have assumed

that the g-factor is 2. Its eigenenergies are

ξ±k = ξk ±
√

(αky +Bx)
2 + (αkx −By)

2. (4)

Now we consider the superconductivity in the presence of

the Rashba interaction [12, 16]. For even parity attractive in-

teraction, we assume the standard BCS type onsite attractive

interaction,

Hint = −V g
∑

kk′

c†k↑c
†
−k↓c−k′↓ck′↑, (5)

with c†kσ and ckσ being the creation and annihilation operators

of the electron with momentum k and spin σ. In general, the

odd parity part is

−
∑

kk′

V u
ij

(

k,k′
)

(iσiσ2)αβ (iσjσ2)γδ c
†
kαc

†
−kβc−k′γck′δ,

(6)

with V u
ij

(

k,k′
)

being an odd function with respect to k and

k′, and invariant under the crystal symmetry transformations.

For simplicity, we assume the simplest case V u
ij

(

k,k′
)

=

V uγ̂i (k) γ̂j
(

k′
)

with γ̂ (k) = 1
k (−ky, ky) in the Rashba

system. We assume that the Rashba splitting is much larger

than the critical temperature (ER ≫ Tc) and the inter-band

pairings can be neglected. Then, the interaction Hamiltonian

in the band basis reads to

Hint = −
∑

kk′λλ′

tkλt
∗
k′λ′ ĝλλ′ψ†

kλψ
†
−kλψ−k′λ′ψk′λ′ , (7)

where Ψ†
kλ and Ψkλ are the creation and annihilation oper-

ators with the band index λ = ±, and tkλ = λieiφk with

φk = argk. The k-independent matrix ĝ is

ĝ =

(

g1 g2
g2 g1

)

, (8)

with g1 = (V g + V u) /4 (> 0) and g2 = (V g − V u) /4. In

this paper, we focus on two limiting cases. (1) |V u| ≪ |V g|
case. We calculate the first order terms in the small parameter

rt = 2V u

V g+V u , which is proportional to the triplet channel in-

teraction V u. (2) |V u| ≫ |V g| case. We are interested in the

first order terms in the small parameter rs = 2V g

V g+V u , which

is proportional to the singlet channel interaction. In most of

the cases, we expect that the singlet interaction V g is larger

than the triplet interaction V u, and hence we briefly mention

the amplitude of rt. If we assume that V g and V u correspond

to the on-site and nearest-neighbor interactions, respectively,

their amplitudes can be roughly estimated as e2/a0 and e2/a
with a0 being the Bohr radius and a being the lattice constant.

Therefore, rt ∼ 0.1 is a reasonable value. Although we can

not apply the same argument for rs, we consider the other

limit rs ≪ 1 to see the global behavior of γ.

In order to calculate the superconducting fluctuation current

slightly above the mean field critical temperature, it is conve-

nient to employ the GL theory. The free energy quadratic with

respect to the order parameters can be obtained by the equa-

tion [12]

F =

∫

d2q

(2π)
2

[

∑

λλ′

Ψ∗
λq

(

ĝ−1
)

λλ′
Ψλ′q −

∑

λ

T
∑

ωn

∫

d2k

(2π)
2Gλ (k, iωn)Gλ (−k+ q,−iωn) |Ψλq|2

]

, (9)

where Ψλq is the order parameter and Gλ (k, iωn) =

(iωn − ξλk)
−1

is the non-interacting normal Green’s func-

tion. We set the Boltzmann constant kB = 1.

Firstly, we assume EF > 0, and we will soon show that

nonreciprocal current vanishes for EF < 0 in Eq. (18) below.

After some calculations (see Supplementary Information), we

obtain

F =

∫

d2k

(2π)
2

∑

λλ′

Ψ∗
λ

[(

ĝ−1
)

λλ′
+ δλλ′Nλ (S1 − Lλk)

]

Ψλ′ ,

(10)

Lλk = Kλk
2 − λRλ (Bykx −Bxky) , (11)

S1 = log
2eγEEc

πT
, (12)

with δλλ′ , γE, and Ec being the Kronecker delta, Euler con-

stant, and cutoff energy respectively. The density of states

Nλ and the other coefficientsKλ andRλ are given in Supple-

mentary Information. The critical temperatures are obtained

by solving

det
(

ĝ−1 − N̂S1 (Tc)
)

= 0, (13)

with N̂λλ′ = δλλ′Nλ. It results in

1

S1 (Tc)
=
g1 (N− +N+)

2
±

√

(

g1 (N− −N+)

2

)2

+ g22N−N+.

(14)

Due to the form of the interaction (g1 ≈ g2 for the singlet
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dominant case and g1 ≈ −g2 for the triplet dominant case),

the solution with the plus sign has much higher critical tem-

perature. Hence, we can ignore the order parameter with the

lower critical temperature when we calculate the fluctuation

current.

The fluctuation current can be obtained by evaluating the

equation [9, 17]

j =− T
∑

k

C
∂η (k + 2eA)

∂A

∣

∣

∣

∣

A=0

×
∫ 0

−∞

du exp

[

−C
∫ 0

u

dtη (k − 2eEt)

]

, (15)

where η is the eigenvalue of the matrix in Eq. (10) with the

higher critical temperature, and C = 32Tc

π~(N−+N+) + O (rt,s).

We expand the eigenvalue up to O(rt,s) because we can show

that the coefficient of the second order term is half of the co-

efficient of the linear term, hence the higher order terms can

be neglected. It is noted that the factor C should contain a

rt,s-dependent correction from the relaxation time of order

parameters in the time-dependent GL theory. However, we

ignore it because it does not affect the γ-value in the lowest

order of rt,s. As in the case of the normal state, we assume

that the electric and magnetic fields are applied along the x
and y directions respectively, and evaluate the current along

the x direction up to O
(

ByE
2
x

)

. We will discuss the case of

general fields configurations later. After the integration in Eq.

(15) is carried out (we employed Mathematica), the relation

Eq. (14) is used to simplify the equation. The result is

jx = σ(1)Ex + σ(2)E2
x, (16)

σ(1) =
e2

16~ε
, (17)

σ(2) =
πe3Byrt,s
128~ε2

× N−N+ (K−N− −K+N+) (K−R+ +K+R−)

S1 (Tc)Tc (N− +N+) (K−N− +K+N+)
2 ,

(18)

in the lowest order of rt,s. Here, we have defined the re-

duced temperature ε = T−Tc

Tc
. The linear coefficient σ(1) is

the conventional form of the fluctuation conductivity in two-

dimensional superconductors. The nonlinear coefficient σ(2)

grows faster than σ(1) toward the critical temperature as in the

case of MoS2 [9]. It is noted that the parity mixing is essential

for the nonreciprocal current, which vanishes for rt,s = 0.

We mention the case when the Fermi energy is below the

crossing point of the bands (EF < 0). In this case, because the

density of states from the upper band is zero, the nonrecipro-

cal current vanishes, whereas, the normal current contribution

exists [8].

For EF > 0, the γ-value expressed with the microscopic

parameters is

WγS =
σ(2)

By

(

σ(1)
)2 =

πµB~S3EFαrt,s
eS1Tc (2EF + ER)

, (19)

with W being the sample width and ER = mα2

~2 being the

energy splitting at the shifted momentum due to the Rashba

spin–orbit interaction, and S3 = 7ζ(3)
4π2T 2

c

. We have used the

relation between σ(1), σ(2), and γ as shown in Ref. [9]. More

precisely, σ(1) and σ(2) in Eq. (19) should contain normal

state contributions. Therefore, the γ-value approaches the

value in Eq. (19) when the fluctuation contribution excesses

the normal contribution. Explicitly, according to the Drude

formula for the normal conductivity, the γ-value develops be-

low ε∗ = m
16~nτ , with n being the electron density and τ being

the relaxation time.

It should also be noted that the sign of Eq. (19) depends on

the sign of rt,s, i.e., the sign of V u for the singlet dominant

case and V g for the triplet dominant case. Therefore, we can

determine whether the interaction is repulsive or attractive by

MCA measurement.

Here, we consider the nonreciprocal current which relies on

the third order term with respect to the wavenumber as transi-

tion metal dichalcogenides [9]. Although the Rashba Hamil-

tonian possesses rotational symmetry, the cubic term of the

wavenumber of the order parameter appears in the GL free

energy in the presence of the in-plane magnetic field. The de-

tailed calculation of the γ-value is shown in Supplementary

Information, and the result is

Wγ̃posS =
3πµB~α

2eTc (2EF + ER)
2 (EF > 0), (20)

Wγ̃negS =
15πµB~α

4eTcER (2EF + ER)
(EF < 0). (21)

The ratio between the γ-values from the parity mixing and the

cubic term mechanisms is

γS
γ̃posS

∼ rt,sEF (2EF + ER)

S1T 2
c

. (22)

Therefore, the MCA from the cubic term is negligible com-

pared to that from the parity mixing.

Next, we compare the γ-values in the normal state and the

superconducting fluctuating regime (Eq. (19)). In Ref. [8],

it has been concluded that the MCA exists if the Fermi en-

ergy is below the crossing point of the bands (EF < 0). The

amplitude of the MCA is

WγN =
3πµB~α

2e [ER (ER − 2 |EF|)]3/2
. (23)

We assume that the strength of the spin–orbit interaction is

comparable with the Fermi energy (ER ≈ |EF|) because it is

difficult to realize EF < 0 with a small ER. Then, we obtain

WγN ∼ µB~
2

e
√
m

1

|EF|5/2
. (24)

In the superconducting fluctuation regime, the nonreciprocal

fluctuation current exists in the case of EF > 0, which is
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FIG. 1. (color online). The three fields configurations which corre-

spond to (a) σxyxx, (b) σxxxy, and (c) σxyyy. B, E, and I in the

figures represent the electric field, magnetic field, and nonreciprocal

current respectively.

opposite to the normal state. With the same assumption for

the normal state, we obtain

WγS ∼ µB~
2

e
√
m

rt,sE
1/2
F

S1T 3
c

. (25)

From Eqs. (24) and (25), we conclude that the MCA is drasti-

cally enhanced in the superconducting fluctuation regime be-

cause of the huge energy scale difference between the Fermi

energy EF and the critical temperature Tc. This is similar to

the proceeding results for MoS2 [9].

We finally mention the electric and magnetic fields angle

dependence of the nonreciprocal current. If we express the

second order current as ji = σijklBjEkEl, the coefficient

σijkl is the pseudo tensor consistent with the crystal symme-

try. Our model Eq. (3) possesses C∞ symmetry and arbitrary

in-plane mirror symmetries, which impose the restrictions that

among σxjkl, only σxxxy (= σxxyx), σxyxx, and σxyyy can be

finite (corresponding configurations are shown in Fig. 1), and

σxyyy = 2σxxxy + σxyxx and σyjkl = −σxjkl are satisfied.

According to calculations the same as that for σxyxx above,

we obtain σxxxy = − 1
3σxyxx and σxyyy = 1

3σxyxx, which

satisfy the above conditions. If we define the angle between

the current and magnetic (electric) field as θB(θE), the nonre-

ciprocal current is

j(2) = σxyyy (2 sin θB + sin (θB − 2θE))BE
2, (26)

whose dependence in the (θB, θE) plane is shown in Fig. 2. It

is noted that the normal state has the same angle dependence

although it has not been discussed in the previous paper [8].

Realistic materials do not have such high symmetries, how-

ever, the above discussion should be applicable if the Fermi

surface is almost circular.

We have investigated the MCA of the Rashba system in the

superconducting fluctuation regime. The main result is the

explicit form of the γ-value shown in Eq. (19). Here, we esti-

mate the γ-value for the LaAlO3/SrTiO3 interface, where the

two-dimensional Rashba superconductivity is realized [18–

21]. Its superconducting critical temperature is Tc ∼ 100mK.

We mentioned that the γ-value approaches the value in Eq.

(19) when the fluctuation current exceeds the normal state

contribution. The normal state sheet resistance is RN ∼ 1kΩ

0 π/2 π 3π/2 2π
0

π/2

π

3π/2

2π

θ
B

θ
E

-3

-2

-1

0

1

2

3

FIG. 2. (color online). The electric and magnetic fields angle de-

pendence of j(2). θB (θE) represents the angle between the magnetic

(electric) field and the nonreciprocal current. The amplitude is nor-

malized by σxyyyBE2.

[18–21] and the linear part of the fluctuation conductivity is

shown in Eq. (17). By comparing them, we obtain T − Tc ∼
1.5mK, below which Eq. (19) is applicable. The carrier den-

sity is n ∼ 1013cm−2, spin–orbit field is BSO ∼ 1T, and the

Debye temperature is TD ∼ 400K. If we assume rt = 0.1, we

obtain WγS ∼ 8× 10−2T−1A−1m. With the typical sample

width W = 10−6, we obtain γS ∼ 8× 104T−1A−1, which is

a very large value compared with the previously known sys-

tems [2–6].

Such a huge enhancement of the MCA originates from the

energy scale difference between the Fermi energy EF and the

critical temperature Tc as indicated in Eqs. (24) and (25). This

phenomenon is similar to the case of superconducting MoS2

[9], in which the large MCA stems from the trigonal warping

term due to its three-fold rotational symmetry. However, the

MCA originates from the parity mixing of the order parameter

in the present case.

We have also shown the unique fields angle dependence of

the nonreciprocal current, which is summarized in Fig. 1. It

originates from the symmetry constraints of the higher rank

response tensor. Especially, if the Fermi surface is almost cir-

cular and well approximated by our model, the fields angle

dependence is given in Eq. (26) and shown in Fig. 2.

In addition to LaAlO3/SrTiO3 as we have discussed, nor-

mal Rashba systems can be used with the aid of supercon-

ducting proximity effect. BiTeX (X=I, Br, Cl) [22, 23], the

surface of Au(111) [24], or Bi/Ag(111) alloy [25] will work

well.

Experimentally, the nonreciprocal current can be observed

simply by measuring second order harmonic voltage drop un-

der a fixed a.c. current. With such a simple method, we can

observe the nontrivial second order response which reflects

the crystal symmetry or the Hall response of the nonlinear

current shown in Fig. 1(c). It is also possible to determine
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the sign of α from the sign of the γ-value. Moreover, we may

estimate the amplitude of rt,s, which is the ratio between the

even and odd parity attractive interactions by using the mea-

sured γS-value.
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