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Motivated by recent experiments on Kondo insulators, we theoretically study quantum oscillations
from disorder-induced in-gap states in small-gap insulators. By solving a non-Hermitian Landau level
problem that incorporates the imaginary part of electron’s self-energy, we show that the oscillation
period is determined by the Fermi surface area in the absence of the hybridization gap, and derive
an analytical formula for the oscillation amplitude as a function of the indirect band gap, scattering
rates, and temperature. Over a wide parameter range, we find that the effective mass is controlled
by scattering rates, while the Dingle factor is controlled by the indirect band gap. We also show
the important effect of scattering rates in reshaping the quasiparticle dispersion in connection with
angle-resolved photoemission measurements on heavy fermion materials.

Quasiparticles in interacting/disordered systems gen-
erally have a finite lifetime due to the presence of
electron-electron, electron-phonon or electron-impurity
scattering. The decay of quasiparticles is formally de-
scribed by the imaginary part of electron’s self-energy. In
small-gap systems, the decay of a quasiparticle can alter
its energy-momentum dispersion significantly, for exam-
ple, transform two-dimensional Dirac points into “bulk
Fermi arcs” [1, 2].

In this work, we study the effect of quasiparticle life-
time on the quantum oscillation in small-gap insulators.
The oscillation of various physical quantities, such as the
magnetic susceptibility and resistivity with respect to the
magnetic field is usually regarded as a key characteristics
of metals with a Fermi surface [3]. The period of the os-
cillation is determined by the Fermi surface area, and
the amplitude decay with the temperature is determined
by electron’s effective mass. Intriguingly, recent experi-
ments found quantum oscillations in heavy fermion ma-
terials SmB6 [4, 5] and YbB12 [6, 7], which are Kondo
insulators with a small energy gap. The physical origin
of these quantum oscillations in insulators is hotly de-
bated [8–19].

Motivated by, but not limited to, these experiments on
Kondo insulators, we theoretically study quantum oscil-
lations from disorder-induced in-gap states in small-gap
insulators. In a generic two-band model with a hybridiza-
tion gap, disorder leads to finite quasiparticle lifetime
and in-gap states. The spectrum and width of Landau
levels in a magnetic field is calculated by solving a non-
Hermitian Landau quantization problem that incorpo-
rates the imaginary part of electron’s self-energy. The
density of states inside the gap, which comes from the
tails of broadened Landau levels, is found to exhibit os-
cillations periodic in 1/B. The period is given by the
Fermi surface in the absence of hybridization. An an-
alytical formula is derived for the oscillation amplitude
as a function of the indirect band gap, scattering rates
and the temperature. For a wide range of parameters,
the temperature dependence of the quantum oscillation
is qualitatively similar to Lifshitz-Kosevich (LK) theory
of normal metals [3, 20, 21]. A key difference, however,

is that the cyclotron mass in the LK factor is not the
band mass, but depends on the scattering rate. More-
over, the oscillation amplitude at a fixed temperature,
i.e., the Dingle factor, is controlled by the indirect band
gap, when the scattering rate is small.

The peculiarity of quantum oscillation amplitude we
found in small-gap insulators, where the scattering rate
controls LK factor instead of Dingle factor, is quite the
opposite to the case of normal metals, where the scat-
tering rate controls Dingle factor instead of LK factor.
This result is an important prediction of our theory. It
contrasts clearly with quantum oscillations in clean in-
sulators that lack in-gap states, where the amplitude of
magnetization oscillation exhibits non-monotonous tem-
perature dependence [8] or deviates from LK factors
[22], and the oscillation of thermally averaged density of
states exhibits thermal activation behavior and drops to
zero, instead of saturates, in the zero temperature limit
[9, 11, 22].

We start by considering a generic two-band model with
a hybridization gap:

H0(k) =

(
ε1(k) ∆(k)
∆(k) −ε2(k)

)
, (1)

with k ≡ |k|. Diagonal terms ε1(k) and −ε2(k) de-
scribe the dispersion of an electron-type and a hole-type
band respectively, and ∆(k) describes their hybridiza-
tion. This Hamiltonian in the inverted regime is widely
used as a minimal model for the electronic structure of
Kondo insulators at low temperatures [23]. In this con-
text, the two bands come from d- and f -orbitals, and ex-
hibit an avoided crossing on a circle or a sphere in k space
k = kF , which is set by the condition ε1(kF )+ε2(kF ) = 0.
Note that the hybridization gap δ(kF ) ≡ |∆(kF )| is
(much) larger than the indirect band gap δ, when the
two bands are (highly) asymmetric, as shown in Fig. 1.

Disorder introduces in-gap states in the above model.
The disordered Hamiltonian we shall study is H =∑

k c
†
kH0(k)ck +

∫
drU(r)c†rΛcr, where c† ≡ (d†, f†) is

the electron creation operator for the two orbitals. U(r)
is the impurity potential, which is assumed to be charac-
terized by 〈U(r)〉 = 0 and 〈U(r)U(r′)〉 = nimpU

2
0 δ(r−r′)
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FIG. 1. Schematic band structure of a Kondo insulator. Inset:
Zoom of the hybridization gap near k = kF . δ(kF ) is the
hybridization gap defined as the energy difference of the two
bands at k = kF . δ is the indirect band gap.

under disorder average. nimp is the impurity density.
The electron-impurity scattering is allowed to be or-
bital dependent, so the scattering vertex takes the form
Λ = αI + βσz. In heavy fermion systems, f -orbitals are
tightly bound to the nucleus and scatter much less with
impurities than d-orbitals do.

Using self-consistent Born and T-matrix approxima-
tion, we compute disorder-induced electron self-energy
operator Σ(ω), which is a 2× 2 matrix. In systems with
p-wave hybridization, the self-energy is guaranteed to be
diagonal [24]. The real part of Σ(ω) renormalizes the
chemical potential and the inverted gap at k = 0, and for
convenience, will be absorbed into H0 in the following.
The imaginary part of the self-energy becomes a nonzero
diagonal matrix when the disorder strength nimpU0 ex-
ceeds a critical value on the order of hybridization gap
δ(kF ). At low energy |ω| . δ(kF ), Im Σ(ω) is weakly
dependent on ω, hence can be approximated by

Σ(ω) '
(
−iΓ1 0

0 −iΓ2

)
≡ −i

2
(ΓI + γσz). (2)

Γ1,Γ2 > 0 are the inverse lifetimes of quasiparticles on
the d- and f -band respectively, and we have defined Γ ≡
Γ1 + Γ2 and γ ≡ Γ1 − Γ2. Generally, Γ1 6= Γ2 or γ 6=
0, as the two bands have different masses and disorder
potentials.

The imaginary part of electron’s self-energy modifies
and broadens the quasiparticle dispersion, and creates
in-gap states. To see this, we compute the spectral func-
tion A(k, ω) = −2Im [1/(w −H0(k)− Σ)] . For a given
k, A(k, ω) is a sum of Lorentzians associated with the
poles of the Green’s function E±(k), which are complex
eigenvalues of the non-Hermitian quasiparticle Hamilto-
nian H(k) ≡ H0(k) + Σ. For our two-band model and
self-energy defined by Eq. (1) and (2), the two eigenval-

(c)(b)(a)

FIG. 2. (a) Spectral function A(k, ω) for model εi =
k2/(2mi)−µi (i = 1, 2), m2/m1 = 50, δ(kF )/(µ2−µ1) = 0.02,
Γ2/δ(kF ) = 0.1, Γ1/δ(kF ) = 0.7, where the electron is spin-
less. The unit for colorbar is 1/δ(kF ). (b) Same as (a)
but with Γ1/δ(kF ) = 1.7. (c) Momentum-integrated spec-
tral function A(ω) for model in (a) (blue, solid) and (b) (red,
dashed) and in the clean limit Γ1 = Γ2 = 0 (black, dotted).
The unit for A(ω) is m2.

ues E±(k) are [1]

E±(k) =
1

2

(
ε1(k)− ε2(k)− iΓ

±
√

(ε1(k) + ε2(k)− iγ)2 + ∆2(k)
)

(3)

The real part of E±(k), denoted as ε±(k), is the disper-
sion of quasiparticle conduction and valence band, while
its imaginary part determines the width of the broad-
ened spectral function. In the special case of a single
scattering rate Γ1 = Γ2 or γ = 0, the imaginary part is
a constant so that the original band dispersion of H0(k)
is broadened uniformly.

In the general case of two distinct scattering rates Γ1 6=
Γ2, H0(k) and Σ do not commute. Then γ 6= 0 has
the nontrivial effect of altering the quasiparticle band
dispersion ε±(k), namely, damping reshapes dispersion.
In particular, the quasiparticle hybridization gap at k =
kF becomes reduced, given by

ε+(kF )− ε−(kF ) =

{ √
δ2(kF )− γ2, when |γ| < δ(kF ),

0, when |γ| ≥ δ(kF ). (4)

With increasing disorder, the scattering rates Γ1,2 and
hence |γ| increases. Above a critical amount of disor-
der |γ| > δ(kF ), the quasiparticle gap completely van-
ishes, leading to a disorder-induced semimetal. In the
semimetallic phase, the quasiparticle conduction and va-
lence bands stick together on the Fermi surface k = kF ,
despite that the hybridization term is present. Such band
sticking without fine-tuning is a remarkable and topolog-
ically robust feature which is unique to non-Hermitian
band theory of finite-lifetime quasiparticles [25], but for-
bidden by level repulsion in Hermitian band theory. As
we shall show later, quantum oscillation appears in both
insulator and semimetal phases.

In Fig. 2, we plot the spectral function A(k, ω) and
the density of states A(ω) ≡

∫
dk

(2π)2A(k, ω) for different

scattering rates Γ1,2. Due to its localized nature, the
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f -orbital has a smaller disorder-induced scattering rate
Γ2 < Γ1. Panel (a) and (b) correspond to |γ| < δ(kF ) and
|γ| > δ(kF ) respectively. We emphasize that the presence
of two distinct scattering rates is necessary to reproduce
many important features of the angle-resolved photoe-
mission spectroscopy (ARPES) data on heavy fermion
materials, which cannot be captured using Γ1 = Γ2 [24].
We note a systematic temperature-dependent ARPES
study of the Kondo insulator SmB6 showing that f -state
spectra peak grows in height and narrows at low temper-
atures [26]. This observation is consistent with the ex-
istence of well-defined electron quasiparticles in the zero
temperature limit, but does not favor the scenario of frac-
tional excitations.

Due to the disorder scattering, the hybridization gap is
partially filled, as shown by the density of states A(ω) in
Fig. 2(c). Assuming the hybridization gap and scattering
rates are small compared to the d-state band width, the
density of states at low energy can be computed analyt-
ically [24]

A(ω) = D0Im

[
1√

δ2/ [4(ω + iΓA)2]− 1

]
. (5)

with

ΓA =
m1Γ1 +m2Γ2

m1 +m2
, δ ≡

2
√
m1m2

m1 +m2
δ(kF ). (6)

Here m1,2 > 0 are effective masses for d- and f -band re-
spectively, D0 = D1 + D2 is the total density of states
from both the d- and f -bands at the Fermi energy ω = 0
in the absence of hybridization gap, and δ is the indi-
rect band gap in the clean limit. The imaginary part
ΓA, a weighted sum of the two scattering rates, leads to
disorder-induced broadening of density of states. Since
the f band has a much larger mass m2 � m1, the indi-
rect gap δ is much smaller than the hybridization δ(kF ),
and even a small scattering rate Γ2 is sufficient to gener-
ate considerable density of states within the gap, which is
consistent with previous theoretical studies [27, 28] and
experimental findings [29]. In-gap states in SmB6 were
also reported in numerous experiments, although its ori-
gin remains an open question. For example, the low tem-
perature electronic specific heat grows linearly with tem-
perature C ∼ γT instead of exponentially. Our theory is
consistent with recent experiments where a variation of γ
from sample to sample is found [5, 30–32]. The large bulk
AC conduction recently found in SmB6 [33] also supports
the existence of localized in-gap states.

We now show that in-gap density of states in our model
exhibits quantum oscillation under magnetic field. To
the leading order approximation, the scattering rates are
taken to be field-independent. The density of states is
then given by A(ω) = −(B/π)Im

∑
j [1/(ω − Ej)], where

Ej denotes the complete set of complex eigenvalues of
the non-Hermitian Hamiltonian with Pierels substitution
k→ k−A (e = ~ = 1), i.e., H(B) = H0(k−A) + Σ.

For concreteness, we consider two bands with
quadratic dispersion in two dimensions: εi = k2/(2mi)−
µi (i = 1, 2), where m1,2 > 0 are the effective masses
for d- and f -bands respectively. We take an isotropic
p-wave hybridization gap: ∆(k) = v(kxsx + kysy). Its
band structure is schematically shown in Fig. 1.

The exact non-Hermitian Landau level spectrum of
H(B) is derived analytically [24]. Each Landau level
n ≥ 1 consists of two sets of complex eigenvalues in each
spin sector denoted by s =↑, ↓:

Esn≥1,± =
1

2

(
εs1,n − εs2,n − iΓ

±
√[(

εs1,n + εs2,n
)
− iγ

]2
+ v2(8nB)

)
, (7)

where εs1,n = B(n ± 1/2)/m1 + µ1 and εs2,n = B(n ∓
1/2)/m2 + µ2 (with upper/lower sign for s =↑, ↓). For
high Landau level n� 1, the exact result Eq. (7) is iden-
tical to the one obtained by simply replacing k →

√
2nB

in the zero-field dispersion (Eq. (3)), and is thus also
identical for both spin sectors. This agreement shows
that semi-classical approximation remains valid for Lan-
dau quantization of finite-lifetime quasiparticles whose
self-energy has an imaginary part.

Typical Landau level energy spectrum is plotted as a
function of the magnetic field in Fig. 3(a) for the in-
sulator phase, and (b) for the disorder-induced metal
phase. Band edge oscillation can be seen clearly in both
cases. For a given Landau level n, the hybridization
gap is minimized when B = k2F /(2n). In this way,
the band edges of Landau levels oscillate with period
∆ (1/B) = 2/k2F = 2π/SF , where SF ≡ πk2F is the Fermi
surface area in the absence of the hybridization. The
oscillation of Landau level band edges leads to the oscil-
lation of spectral function inside the gap, as the spectral
weights inside the gap come from the tail of the broad-
ened Landau levels. This effect, originated from the life-
time effect, persists even at zero temperature and in the
limit of small (but nonzero) scattering rates.

We now turn to the field-dependent and ther-
mally averaged density of states inside the gap, de-

fined as D(ω, T ) ≡ −
∫ +∞
−∞ dE ∂nF (E−ω,T )

∂E A(E), where

nF (µ, T ) = (e(E−µ)/T + 1)−1 is the Fermi-Dirac dis-
tribution function. Under the assumption of small hy-
bridization gap δ(kF ) � k2F /

√
m1m2, weak magnetic

field B � k2F and low temperature T � δ(kF ), B/m1,2,
the density of states can be analytically computed as [24]

D(ω = 0, T ) =

− 4 cos

(
πk2F
B

)∑
i=±

Mi
π2T
ωc,i

sinh
(

2π2T
ωc,i

) exp

(
−Di
B

)
,

(8)

where ωc,i ≡ B/Mi are the cyclotron frequencies associ-
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(a) (b)

(c)

FIG. 3. (a) Real part of the Landau level spectrum Re[E↓n,±]
as function of magnetic field, with the same model in Fig. 2(a).
s =↑ sector is similar. (b) Same as (a) but with the same
model in Fig. 2(b). (c) Exact numerics of spectral function
A(ω = 0) as function of 1/B and B (inset) with the model
in (a). Here both spin sectors are taken into account. The
unit for A(ω) is m2. m1 = me is the free electron mass,
hybridization gap is δ(kF ) = 2meV. The resulting indirect
band gap is δ = 0.56meV and the oscillation frequency is
F = 800T.

ated with following effective masses

M± =
(m1 +m2)

2

[
1√

1 + δ2/(4Γ2
A)
± m1 −m2

m1 +m2

]
, (9)

and D± are renormalized Dingle exponents

D± = π(m1 +m2)

(
ΓA

√
1 + δ2/(4Γ2

A)± ΓD

)
, (10)

where ΓD ≡ (m1Γ1 −m2Γ2)/(m1 +m2).
The analytical formula for quantum oscillation ampli-

tude, Eq. (8), is one of our main results, whose form
is similar to that in free electron models [21] but with
renormalized LK and Dingle factors. It is a sum of
two oscillating components that share the same period
∆(1/B) = 2π/SF . This periodicity is consistent with
our expectation from the Landau level spectrum shown in
Fig. 3, and has also been reported in previous works with-
out including lifetime effects [8, 11, 14]. Note that this
result is not completely obvious, as the conduction band
minimum and valence band maximum are located at two
different momenta k± ≡

√
k2F ± (m1 −m2)δ, rather than

at kF [24]. Instead of having two periods given by k2±,
the oscillation has a single period given by k2F , the Fermi

surface area of the two bands in the absence of hybridiza-
tion. We also note the phase of the oscillation is zero in
Eq. (8), which is different from the π phase shift in a free
electron model. Under strong magnetic field B ∼ k2F ,
there will be a field-dependent phase shift [24] as has
been reported recently [34–37].

The oscillation amplitude in Eq. (8) is determined by
two scattering rates ΓA and ΓD, the indirect band gap δ
and the temperature T . It reduces to familiar results in
various limits. In the gapless limit δ(kF ) = 0, we repro-
duce the LK factors and Dingle factors for two metals.
In the clean limit Γ1 = Γ2 = 0, there is no density of
state within the gap to the leading order of temperature
and we find D(ω = 0, T ) = 0.

Although Eq. (8) is valid both in the insulating phase
Γ1,2 � δ(kF ) and in the semimetallic phase |γ| > δ(kF ),
in the following we focus on the insulating phase, which
applies to Kondo insulators. A detailed study of the
disorder-induced semimetallic phase will be presented
elsewhere.

We first analyze the simplest particle-hole symmetric
model when m1 = m2 = m and Γ1 = Γ2 = Γ. In this
case, ΓA = Γ, ΓD = 0, and the LK effective mass and
the Dingle exponent are

M =
m√

1 + δ2/(4Γ2)
, D = 2mπ

√
Γ2 + δ2/4. (11)

For small scattering rate Γ � δ, they reduce to M ∼
2mΓ/δ and D ∼ mπδ. Decreasing the damping rate Γ
leads to a smaller LK effective mass, and the Dingle ex-
ponent remains a constant controlled by the band gap.

The LK effective mass reflects the density of states in-
side the gap, since finite temperature effect is a thermal
sampling of the spectral function through the convolu-
tion. Therefore, it is not a coincidence that Eq. (5) and
Eq. (9) look similar. Indeed, the zero field density of
states inside the gap is A(ω = 0) = 2mΓ/δ = M , which
is exactly the LK effective mass.

In the general asymmetric cases m1 6= m2 and Γ1 6=
Γ2 � δ(kF ), the LK effective mass can vary in a wide
range between m1 and m2 with proper choices of δ and
ΓA. The Dingle exponent remains a constant controlled
by the band gap. This is opposite to that in normals
metals when the scattering rate does not affect the LK
effective mass but the Dingle factor.

As a concrete example, we present the quantum oscil-
lation of the same model in Fig. 2(a). The density of
states as function of 1/B is shown in Fig. 3(c). Since
ΓD 6= 0, the oscillation component associated with the
larger Dingle factor becomes dominant [38], whose LK
effective mass is M = 8.5me, in between m1 and m2.

We note that the band edge oscillation in the absence of
the scattering rate is also reported in Ref. [11]. Contrary
to our theory, in that case, the quantum oscillation comes
from thermally excited occupation of Landau levels above
the gap, hence the oscillation amplitude vanishes at zero
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temperature. Similar LK behavior of oscillation of ther-
modynamic observables in an insulator is also reported
in a recent numerical study [14], which is consistent with
our result.

Both the LK effective mass and the Dingle factor pro-
vide testable predictions of our theory. The parameters
in our analysis—the two scattering rates—can be ex-
tracted from other measurements on in-gap density of
states and ARPES spectral function. The oscillation of
density of states inside the gap naturally leads to mag-
netic susceptibility oscillation, i.e., de Haas-van Alphen
effect. The in-gap states may also contribute to the
quantum oscillation in resistivity, and we leave a detailed
study for future work. We hope the results of this work
can help understand quantum oscillations in Kondo in-
sulators, and motivate further study of quantum oscilla-
tions from in-gap states in small-gap insulators.
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