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One of the most challenging problems in correlated topological systems is a realization of the
reduction of topological classification, but very few experimental platforms have been proposed so
far. We here demonstrate that ultracold dipolar fermions (e.g., 167Er, 161Dy, and 53Cr) loaded in
an optical lattice of two-leg ladder geometry can be the first promising testbed for the reduction
Z → Z4, where solid evidence for the reduction is available thanks to their high controllability.
We further give a detailed account of how to experimentally access this phenomenon; around the
edges, the destruction of one-particle gapless excitations can be observed by the local radio fre-
quency spectroscopy, while that of gapless spin excitations can be observed by a time-dependent
spin expectation value of a superposed state of the ground state and the first excited state. We
clarify that even when the reduction occurs, a gapless edge mode is recovered around a dislocation,
which can be another piece of evidence for the reduction.

Introduction.- After the discovery of topological in-
sulators, a topological perspective on condensed matter
physics has become increasingly important1,2. The no-
tion of topological phases has been extended to topolog-
ical semi-metals and topological superconductors. Re-
markably, these phases host exotic particles as low energy
excitations, such as Weyl fermions, Majorana fermions
etc., some of which have potential applications to quan-
tum computations3,4.
The discovery of topological insulators has further

brought great impact beyond solid state physics. In par-
ticular, it has provided a new arena of study in cold
atoms, which is rapidly developing in these years5–8.
A significant advantage of cold atoms over materials is
the high controllability, which has allowed unique obser-
vations for non-interacting topological systems, such as
the Zak phase5, the Thouless pump7,8, and a symmetry-
protected topological state9. With this remarkable suc-
cess, it is not hard to imagine that the high controllabil-
ity would be a key for solving one of the most significant
issues in topological condensed matter physics, i.e. corre-
lation effects on topological insulators/superconductors.
Therefore, combining topology and strong correlations in
cold atoms would provide a new perspective on correlated
topological systems.
One of the striking phenomena induced by correla-

tions in topological systems is the reduction of topolog-
ical classification. Namely, correlation effects reduce the
number of possible topological phases under certain sym-
metry classes. For instance, topological superconductors
of symmetry class BDI follow Z classification in the ab-
sence of correlations while the systems follow Z8 classifi-
cation in the presence of correlations10. In other words,
eight Majorana fermions arising from the winding num-
ber ν = 8 are completely gapped out without symmetry
breaking or gap-closing in the bulk. Extensive studies on
this issue11–29 have revealed that the reduction occurs in
any dimension and is ubiquitous.
In spite of the above remarkable discovery, the follow-

ing crucial question remains unsolved: How can one real-

ize a testbed to observe the reduction of topological clas-
sification? The experimental observation is indispens-
able for further developments in correlated topological
systems, and therefore such a feasible platform to ob-
serve the reduction is highly desired. For solid evidence
of the reduction, tuning the interaction is considered to
be a key technique, but is rather difficult to control in
the platform for solids29. If one could find how to pre-
pare such a platform, it would bring significant progress
toward the observation of the reduction. Unfortunately,
however, very few experimental platforms have been pro-
posed so far.

With this background, we tackle the above problem by
focusing on cold atoms, in which system’s parameters can
be widely controlled. As a first step toward detection of
the reduction, we here consider the simplest case, a one-
dimensional correlated system. Specifically, we demon-
strate that ultracold dipolar fermions30–32, e.g., 167Er,
161Dy, and 53Cr, loaded in a two-leg ladder optical lat-
tice serve as the first promising testbed of the reduction
in one dimension, Z → Z4. Furthermore, we present a de-
tailed account of how to experimentally access this phe-
nomenon. In addition, we find intriguing gapless modes
localized around the dislocations; even when the reduc-
tion occurs, gapless spin excitations are recovered around
the dislocation which cannot emerge for non-interacting
cases.

Reduction of topological classification in one-
dimensional insulators, Z → Z4.- By employing a sim-
ple toy model, we first give an intuitive picture of the
reduction in one dimension Z → Z4 in the presence of
chiral symmetry arising from the structure of the bipar-
tite lattice (for the definition, see Sec. I of supplemental
material33). The corresponding symmetry class is AIII
according to the Altland-Zirnbauer symmetry classes34,
indicating that the topology for non-interacting cases is
characterized with the winding number. Recent studies
based on the entanglement of the ground state11 or field
theories24,28 revealed that the classification result is re-
duced from Z to Z4 due to correlations.
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The reduction Z → Z4 can be observed by introduc-
ing interactions into the following two-leg Su-Schrieffer-
Heeger (SSH) model composed of spin-half fermions,

H0 = −
∑

iα

(V c†iAασciBασ + tc†i+1AασciBασ) + h.c.,(1)

where c†isασ creates a fermion in spin-state σ(=↑, ↓) at
sublattice s(= A,B) and chain α(= a, b) of site i. The
lattice structure is shown in Fig. 1(a). Gapless edge
modes of the above model are expected to be unstable
against interactions. The reason is as follows35. In-
troducing the intra-chain Hubbard interactions would
destroy the gapless charge excitations and would leave
spin excitations gapless. Further introducing appropri-
ate inter-chain interactions, e.g., spin exchange interac-
tions, would gap out the remaining gapless edge modes.
If the above argument indeed holds, it could verify the
reduction Z → Z4

36.
Now the problems to be solved are as follows. (i) How

can one implement the above model for the reduction
Z → Z4 in cold atoms? (ii) How can one observe the re-
duction in experiments? Here, we naively think that in-
troducing the kinetic spin exchange interaction of Heisen-
berg type between chains may be sufficient to realize the
reduction. However, this scenario does not work because
it breaks chiral symmetry37 that is the key symmetry to
be preserved in our study.

Dipolar fermions as a testbed of the reduction.- In
the following, we propose how to prepare a promising
and feasible platform for observing the reduction exper-
imentally. Firstly, we note that the non-interacting part
of the above model is considered to be feasibly prepared
with optical lattices38–42.
Now, we discuss how to prepare a system with chi-

ral symmetry where fermions with (pseudo-)spin half in-
teracts with each other by spin-exchange interactions.
We find that this is accomplished by employing dipo-
lar fermions (e.g., 167Er, 161Dy, and 53Cr). Here, specif-
ically, consider two 161Dy atoms, labeled by 1 and 2.
These atoms interact with each other via the magnetic
dipole-dipole interaction30

Udd =
µ0(2µB)

2

4πr3
[S1 · S2 −

3

r2
(S1 · r)(S2 · r)], (2)

where r := r1 − r2, and r1(2) denotes the position vec-
tor of atom 1(2). S1(2) denotes the total spin operator
of electrons in the atom 1(2), respectively. µ0 denotes
the permeability of vacuum. µB denotes the Bohr mag-
neton. Thus, loading 161Dy atoms, one can prepare a
system where fermions interact with each other via the
magnetic dipole-dipole interactions. However, just load-
ing the dipolar fermions is not sufficient, because 161Dy
atoms have huge spin F = 21/2, where F denotes the
total spin of nuclear and electronic spins. Therefore,
one has to restrict the Hilbert space spanned by the
states with mF = 21/2, 19/2, · · · ,−21/2 to the subspace
spanned by two states, e.g. mF = 21/2, 19/2, where mF

denotes the z-component of the spin.

The restriction of the Hilbert space is accomplished by
the following three steps. (i) Prepare atoms in the states
with mF = ±21/2,±19/2 by applying the optical pump-
ing43 which excites the states with F = 21/2 to the states
with F = 17/2. (ii) Remove atoms in the states with
mF = −21/2,−19/2 by temporarily applying a mag-
netic field. (iii) Continue to shine the laser in the first
step to forbid the transition via the dipolar relaxation44

to the other states with mF = 17/2, 15/2, · · · ,−21/2.
The transition can be prevented due to the quantum
Zeno effect45. We refer to the state with mF = 21/2
(mF = 19/2) as an effective up- (down-) spin state. Note
that the intra-chain Hubbard interaction can be tuned by
Feshbach resonance46,47.
We thus end up with the following effective Hamilto-

nian:

H = H0 + U
∑

iα

(nisα↑ −
1

2
)(nisα↓ −

1

2
) + J

∑

i

his,

his = A1(S̃
x
isaS̃

x
isb + S̃y

isaS̃
y
isb)−A2S̃

z
isaS̃

z
isb

−A3(nisa − 1)(nisb − 1)

−A4[(nisa − 1)S̃z
isb + (nisb − 1)S̃z

isa], (3)

where A1 = 162/21, A2 = 16/21, A3 = 2 × (160/21)2,
A4 = (20×162)/(212), respectively. [See Eq. (12) of sup-
plemental material33 for the explicit relation between Udd

and J .] Here, S̃’s are pseudo-spin operators acting on the
Hilbert space with F = 21/2 and mF = 21/2, 19/2. We
have assumed that the two chains are aligned along the z-
direction, and that the distance between adjacent sites in
the same chain is sufficiently large, allowing us to neglect
the dipole-dipole interaction in the same chain48. The
detail of the derivation is given in Sec. I of supplemen-
tal material33. Note that this system respects the chiral
symmetry (see Sec. IB of supplemental material33). In
experiments, the strength of the dipole-dipole interaction
can be tuned by changing the distance between chains,
l0. The maximum strength is estimated to be Udd . 0.1t
with t ∼ 1.0kHz and l0 ∼ 266nm48. Thus, a realistic
value of J in experiments is approximately 0 . J . 0.01t.

Density-matrix renormalization group (DMRG) sim-
ulations for reduction: bulk and edge properties.- Now,
using the DMRG method49–51, we demonstrate that the
reduction of topological classification occurs in our sys-
tem. In the following, we restrict ourselves to the half-
filled case. Let us start with the phase diagram of the
intra-chain Hubbard interaction U vs. the inter-chain in-
teraction J [Fig. 1(b)]. The phase diagram is obtained
for V = 0.1t under the open boundary condition (OBC).
Unless otherwise noted, we set V = 0.1t in the following.
For small J , the system is in the chiral-symmetric phase
while for large J , the system is in the charge-density-wave
(CDW) phase, where the chiral symmetry is broken. We
note that the CDW order breaks discrete symmetry and
thus does not contradict the Mermin-Wagner theorem.
The CDW order is induced by inter-chain density-density
interaction in Eq. (3b).
Here, we note that under the periodic boundary con-
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FIG. 1. (Color Online). (a): Sketch of the model (1). Blue
(red) circles denote A (B) sublattice, respectively. Brown
(gray) lines represent hopping V (t), respectively. (b): Phase
diagram of the intra-ladder interaction U vs. the inter-ladder
interaction J . Red dots are data points. (c): Highest 20
Schmidt eigenvalues (λα) for each case of parameters. Each
eigenvalue is normalized with λ0. These data are obtained
under the OBC and for L = 30. For the calculation of the
Schmidt eigenvalues (λα), we consider a virtual cut dividing
the system at the strong bond (gray line) with i = L/2. We
have observed the same structure of ES for larger L.

dition (PBC), the system is gapped for 0 ≤ U ≤ 5t with
J = 0 and for 0 ≤ J ≤ 0.018t with U = 5t, respec-
tively. These parameter regions are indicated as blue
arrows in the phase diagram [see Fig. 1(b)]. Namely,
the charge gap (∆c) and the spin gap (∆s) are open
for these parameter sets, where the gaps are defined as
∆c = E2L+1,1/2 − E2L,0 and ∆s = E2L,1 − E2L,0 (L de-
notes the length of the chain), respectively. Here, EN,S̃z

denotes the lowest energy of the Hilbert space labeled
by the total number of fermions and z-component of the
total pseudo-spin. The charge gap and the spin gap are
finite both in the chiral-symmetric phase and the CDW
phase. For more detail of the bulk properties, see Sec. II
of supplemental material33.

The reduction occurs in the chiral-symmetric phase.
Let us first observe the reduction via the degeneracy of
the entanglement spectrum (ES) which is calculated in
the bulk. Via the ES in the bulk one can deduce topolog-
ical properties of the system; the degeneracy of the low-
est entanglement energy states predicts the emergence
of gapless modes around the edges52. In the following,
we observe that the degeneracy of the ES is lifted as
the interactions U and J are turned on. The 20 high-
est Schmidt eigenvalues, λ2α, are plotted in Fig. 1(c) for
several cases of parameters. The entanglement energy
can be read off from the corresponding Schmidt eigen-
value via Eα = −2 log(λα). For (U, J) = (0, 0), the ES
shows the 16-fold degeneracy in accordance with non-
trivial topological properties of free fermions; the 16-fold
degeneracy indicates gapless edge modes in the single-

particle spectrum for each channel (α, σ), which is consis-
tent with the winding number taking one for each channel
(α, σ). Turning on the repulsive Hubbard interaction U
lifts the degeneracy from 16-fold to 4-fold [see the data
for (U, J) = (5t, 0)], indicating the emergence of gapless
excitations only in a collective excitation spectrum. As
we see below, these modes emerge in the spin excita-
tion spectrum. Furthermore, turning on the inter-chain
coupling J completely lifts the degeneracy of the ES; no
degeneracy is observed for (U, J) = (5t, 0.018t). Corre-
spondingly, fermions in chain a and b form a singlet at
each site. In the above, we have seen that introducing in-
teractions, U and J , lifts the 16-fold degeneracy of the ES
without chiral symmetry breaking. This result indicates
the reduction of topological classification Z → Z4.
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FIG. 2. (Color Online). (a) [(b)]: The charge gap ∆c and the
spin gap ∆s as functions of the interaction strength under the
OBC for J = 0 (U = 5t), respectively. In panel (b), the data
of ∆c is multiplied by 0.1.

Now let us turn to the edge properties. The pres-
ence/absence of gapless edge modes can be observed by
comparing the results under the PBC and the OBC. In
the following, we demonstrate that all of the edge modes
for non-interacting systems are gapped out without sym-
metry breaking under the OBC. For (U, J) = (0, 0), we
can see that both of the charge and spin gaps are zero,
indicating the emergence of gapless excitations around
the boundary [Fig. 2(a)]. Switching on the interaction U
opens the charge gap and keeps the spin gap zero, indicat-
ing the emergence of gapless edge modes only in the spin
excitation spectrum [Fig. 2(a)]. Furthermore the intro-
duction of J destroys the remaining gapless edge modes
in the spin excitation spectrum [Fig. 2(b)].
Combining the result of the ES for the bulk and that

of the excitation gaps for edges provides a comprehen-
sive understanding of the reduction, Z → Z4. For more
details, see Sec. II of supplemental material33.

How to observe the reduction in experiments.- Our
numerical simulation indicates that the opening of the
charge and spin gaps at edges is a signal of the reduction.
Now, the remaining problem we have to address is how
to observe these excitation gaps.
To observe a gap opening of edge modes in the single-

particle spectrum, we can make use of the local radio-
frequency spectroscopy53. The gap size is estimated to
be ∆c ∼ 2kHz.
On the other hand, to detect the gap formation in spin

excitations, a more elaborated method is necessary. We
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find that it can be extracted from time-evolution of a su-
perposed state composed of the ground state and the first
excited state54. The basic idea is as follows55. Consider
a wave function |ψ(0)〉 composed of a linear combination
of the ground state |1〉 and an excited state |2〉, |ψ(0)〉 =
c1|1〉 + c2|2〉 with c1, c2 ∈ C. Under the time evolution,
the state is written as |ψ(t)〉 = c1e

−iE1t|1〉+ c2e
−iE2t|2〉.

Thus, the expectation value of an operator A is written
as

〈A(t)〉 =
∑

i

|ci|2〈i|A|i〉+ 2a12 cos[ω21t+ δ12], (4)

with a12e
iδ12 := c∗1c2〈1|A|2〉, a12 > 0. By measuring the

frequency, one can read off the size of the gap ω21 :=
E2−E1. Based on this prescription, one can observe the
spin gap by (i) shining a half-π pulse only to the chain

a and (ii) observing frequency of 〈S̃x
a (t)〉 under the time-

evolution with the Hamiltonian (3). Here, we explain the
details of each step. First, shining the half-π pulse maps
the singlet to the superposed state

1√
2
|singlet〉+ i

2
[| ↓〉a| ↓〉b − | ↑〉a| ↑〉b], (5)

where |σ〉a(b) with σ =↑, ↓ describes the spins around the
edges of chain a (b), respectively. |singlet〉 := (| ↑〉a| ↓
〉b − | ↓〉a| ↑〉b)/

√
2. The numerical results show that

the energy of the triplet state with S̃z = 1 and that
with S̃z = −1 is identical (see Sec. IV of supplemental

material33). Second, in real experiments, 〈S̃x
a (t)〉 can be

measured by applying a half-π pulse (along S̃y-axis) for
both channels;

〈ψ(t)|Π†

1/2S̃
z
aΠ1/2|ψ(t)〉= 〈ψ(t)|S̃x

a |ψ(t)〉, (6)

with Π1/2 = exp[iπ(σx
a + σx

b )/4] arising from the half-
π pulse. The matrices σa(b)’s denote the Pauli matrices
acting on a fermion in pseudo-spin state of chain a (b),
respectively.
The numerical simulation shows that the gap size is

approximately ∆s ≃ 0.1t ∼ 100Hz. Hence, at the low-
est temperature achieved in two-component fermion sys-
tems, which is T ≃ 0.25t56, thermal fluctuations signif-
icantly mix the singlet ground state with the excited
states at edges. We can, however, prepare the singlet
edge state by making use of feedback control57,58 and a
singlet-triplet oscillation54 (see Sec. V of supplemental
material33). In this way, by direct observation of exci-
tation gaps under the OBC, we can access the reduction
Z → Z4 in cold atoms.

Effects of dislocations on the reduction.- The high
controllability of our system also allows us to study ef-
fects of dislocations, showing the following intriguing be-
haviors: even when the reduction occurs, gapless spin ex-
citations are recovered around dislocations while single-
particle excitations are gapped. To see this, let us
consider a system with a dislocation described by Ld

[Fig. 3(a)]. Fig. 3(b) indicates that the gap size of spin

excitations decreases and finally becomes zero with in-
creasing Ld, indicating the emergence of the gapless mode
only in the spin excitations. This emergent gapless mode
in the many-body spectrum is reminiscent of edge states
emerging for the so-called topological Mott insulator59–62

which can be understood in the following way: around
the dislocation, the chain a does not couple with the
chain b for 0 < i < Ld, meaning that a single chain with
the Hubbard interaction emerges for i < Ld. We con-
sider that the above argument can be extended to higher
dimensions.
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FIG. 3. (Color Online). (a): Sketch of a dislocation with
Ld = 1. (b): The spin gap ∆s for V = 0.2t, 0.4t, 0.6t, 0.8t,
and 0.9t in the presence of dislocations. The data is obtained
for (U, J) = (5t, 0.018t).

Conclusion.- Despite the rapid development of the-
ory for the reduction of topological classification, an ex-
perimental observation is still missing and only very few
setups have been proposed so far. In this paper, we
have addressed this crucial issue and have proposed a
promising experimental testbed for a realization of the
reduction. The proposed setup with cold atoms allows
us to turn on/off interactions in experiments, making dis-
tinct evidence available. The experimental platform can
be implemented by loading ultracold dipolar fermions,
e.g., 161Dy atoms, into the two-leg SSH model and by
making use of the quantum Zeno effect. We have also
demonstrated how to observe the reduction experimen-
tally, which can be feasibly done by direct measurements
of energy gaps with the Radio frequency spectroscopy
and the time evolution of superposed states. Further-
more, we have observed that even when the reduction
occurs, gapless edge modes are recovered around the dis-
locations. Intriguingly, the edge mode localized around
the boundary is distinct from the one for non-interacting
cases. This edge state is reminiscent of a novel topo-
logical Mott insulator and can be another piece of solid
evidence of the reduction. Our results are expected to
impact on the correlated topological systems and are sup-
posed to serve as a foothold for the experimental obser-
vation of the reduction in higher dimensions, and also
for other novel correlated topological systems, such as
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interaction enabled topological crystalline phases63,64.
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51 U. Schollwöck, Annals of Physics 326, 96 (2011), january

2011 Special Issue.
52 H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504

(2008).
53 T. Fukuhara, P. Schauß, M. Endres, S. Hild, M. Cheneau,

I. Bloch, and C. Gross, Nature 502, 76 (2013).
54 D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and

T. Esslinger, Science (2013), 10.1126/science.1236362,.
55 This argument is also applicable to measurement of the

energy difference between the ground state and higher ex-
cited states (see Sec. III of supplemental material33).

56 A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons,



6

M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler,
D. Greif, and M. Greiner, Nature 545, 462 (2017).

57 R. Inoue, S.-I.-R. Tanaka, R. Namiki, T. Sagawa, and
Y. Takahashi, Phys. Rev. Lett. 110, 163602 (2013).

58 R. Yamamoto, J. Kobayashi, K. Kato, T. Kuno, Y. Sakura,
and Y. Takahashi, Phys. Rev. A 96, 033610 (2017).

59 D. Pesin and L. Balents, Nat. Phys. 6, 376 (2010).
60 T. Yoshida, R. Peters, S. Fujimoto, and N. Kawakami,

Phys. Rev. Lett. 112, 196404 (2014).

61 T. Yoshida and N. Kawakami, Phys. Rev. B 94, 085149
(2016).

62 X. Zhou, J.-S. Pan, Z.-X. Liu, W. Zhang, W. Yi, G. Chen,
and S. Jia, Phys. Rev. Lett. 119, 185701 (2017).

63 M. F. Lapa, J. C. Y. Teo, and T. L. Hughes, Phys. Rev.
B 93, 115131 (2016).

64 T. Yoshida et al., in preparation.


