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Point source localization is a problem of persistent interest in optical imaging. In particular, a
number of widely used biological microscopy techniques rely on precise three-dimensional localization
of single fluorophores. As emitter depth localization is more challenging than lateral localization,
considerable effort has been spent on engineering the response of the microscope in a way that reveals
increased depth information. Here we prove the (sub)optimality of these approaches by deriving
and comparing to the measurement-independent quantum Cramér-Rao bound (QCRB). We show
that existing methods for depth localization with single-objective collection exceed the QCRB, and
gain insight into the bound by proposing an interferometer arrangement that approaches it. We
also show that for collection with two opposed objectives, an established interferometric technique
globally reaches the QCRB in all three dimensions simultaneously, and so represents an interesting
case study from the point of view of quantum multiparameter estimation.

Precise spatial localization of single fluorescent emit-
ters is at the heart of a number of important advanced mi-
croscopy techniques, including defect-based sensing [1–4]
and single-molecule-based tracking and super-resolution
imaging [5–7]. For three-dimensional (3D) imaging, ex-
tracting the emitter’s depth (z position) is an enduring
challenge. Microscopists have addressed this by engi-
neering the microscope’s point spread function (PSF) in
ways that improve the attainable depth precision [8–20],
effectively reducing the associated Cramér-Rao bound
(CRB) [21]. But what is the optimal depth precision
that can be attained by any such microscope engineering
approach? Are existing techniques optimal? In this work
we address these fundamental questions by deriving the
measurement-independent limit, the quantum Cramér-
Rao bound (QCRB) [22], leading to important new in-
sights for 3D optical localization microscopy.

Throughout this Letter we consider semiclassical pho-
todetection in the limit of Poisson counting statistics [23–
27]. This simplified approach ignores (anti)bunching, but
is nonetheless relevant to many practical microscopy im-
plementations and is ubiquitous in the fluorescence mi-
croscopy literature [19, 28–33]. For such classically be-
having light, the term “QCRB” is a bit of a misnomer–
a consequence of the concept’s origin in quantum param-
eter estimation [22]. It can be derived in the present
context with minimal reference to quantum mechanics
[26]. Thus our work is relevant to a broad class of mi-
croscopy techniques in which photon correlations are neg-
ligible and justifiably ignored.

In step with the growing attention to precise infer-
ence of molecular position, microscopists have increas-
ingly adapted the formalisms of statistical parameter es-
timation [28–34]. In this view, the probability of record-
ing a particular realization of a noisy image I conditioned
on the underlying source position x = [x1, x2, x3]T ≡

[x, y, z]T is p(I|x). Related to the CRB is the Fisher in-
formation (FI) matrix [21], with elements given by:

Jij = E
[(
∂xi

log p(I|x)
)(
∂xj

log p(I|x)
)∣∣∣x] , (1)

where E[·|x] denotes the expectation value conditioned
on the value of x. The counts I(xI , yI) recorded at each
position (xI , yI) are assumed to be independent and dis-
tributed according to I(xI , yI)|x ∼ Poisson

(
Ī(xI , yI ;x)

)
for some expected image Ī(xI , yI ;x) that depends on the
microscope’s response function. The same statistics can
be obtained from a quantum optical treatment by con-
sidering thermal light in the weak-source limit [23–25].
Equation (1) then becomes:

Jij =

∫∫
dAI

(
∂xi

Ī(xI , yI ;x)
) (
∂xj

Ī(xI , yI ;x)
)

Ī(xI , yI ;x)
. (2)

We take the convention that Ī(xI , yI ;x) is normalized;
in accordance with our assumptions of statistical inde-
pendence then the FI for N detected photons is simply
J (N) = NJ . The photon-normalized CRB for the pa-
rameter xi is then given by:

σ(CRB)
xi

=
√

[J−1]ii, (3)

which sets the lower bound for the precision with which
any unbiased estimator of xi can perform [21].

We consider a stochastic field with the following nor-
malized equal-time mutual coherence function [23–27] on
the Fourier plane of the microscope:

g (xF , yF , x
′
F , y

′
F ;x) = ψ (xF , yF ;x)ψ∗ (x′F , y

′
F ;x) . (4)

Here the classical wavefunction in the scalar approxi-
mation (in appropriately scaled coordinates) is given by
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[35, 36]:

ψ(xF , yF ;x) = A(1− r2F )−1/4Circ
(nrF

NA

)
× exp

[
ik

(
xxF + yyF + z

√
1− r2F

)]
, (5)

as illustrated in Fig. 1(a). In Eq. (5) rF =
√
x2F + y2F ,

n is the index of refraction of the objective immersion
medium (assumed matched to that of the sample), NA is
the numerical aperture, and the Circ(·) function restricts
support to rF < NA/n. A is a normalization factor such
that

∫∫
dAF |ψ(xF , yf )|2 = 1, given analytically by:

A =
[
2π
(

1−
√

1− (NA/n)2
)]−1/2

. (6)

We assume a quasimonochromatic signal with free-space
wavelength λ◦ and k = 2πn/λ◦. After the objective we
assume paraxial propagation through air and lossless, lin-
ear optical elements. We neglect polarization effects, as is
appropriate, e.g., for emission from a freely tumbling flu-
orophore [37]. Note that in Eq. (5), the source position
x affects only the phase at the Fourier plane, based on
the assumption that displacements in x are sufficiently
small [36]. Thus recent work on quantum multiphase es-
timation is relevant [38, 39], though again we stress the
classical nature of the problem at hand. In pursuit of the
ultimate precision bounds, we here consider the limiting
case of zero background light. The expected intensity
distribution at the detector is related to ψ(xF , yF ) via a
generic unitary operator U :

Ī(xI , yI ;x) =
∣∣∣U[ψ(xF , yF ;x)

]∣∣∣2. (7)

Thus once U is specified one can compute Eqs. (2) and
(3). The form of U depends on the sequence of optical
elements (lenses, mirrors, beam splitters, phase elements,
etc.) placed between the Fourier plane and the camera.
In the simplest case only a tube lens is added [Fig. 1(a)],
and the appropriate unitary operation is a scaled Fourier
transform U = F [40]. It is known that this approach
produces worse FI for z estimation than for x and y,
especially near z = 0 [30].

New microscope designs have been developed in re-
cent years with the goal of modifying the PSF in a way

that decreases σ
(CRB)
z . A common framework is to mod-

ulate the phase at the Fourier plane with some carefully
chosen phase mask ϕ(xF , yF ), e.g., programmed onto
a spatial light modulator (SLM) [Fig. 1(b)], such that
U [ψ] = F [ψ × exp (iϕ)] in Eq. (7). This encompasses
the astigmatic [9], double-helix [10, 11], and self-bending
PSFs [12], among others [13, 14]. Related multifocus
techniques [8, 15, 16] can be represented by a series of
beam splitters and phase elements. FI has previously
been used as a figure of merit for comparison of these
techniques [7, 30, 31]. A rational approach to PSF design

FIG. 1. Single-objective collection schematics. (a) Standard
microscope with microscope objective (MO), tube lens (TL)
and camera (C). Insets: (i) intensity, (ii) example phase of ψ.
(b) Engineered microscope with phase element. Two lenses
form a 4f optical correlator [40], within which a phase re-
tarder (e.g. an SLM) is placed. (c) Proposed interferom-

eter for obtaining σ
(QCRB)
z . SLM compensates for defocus

accrued downstream. Collected light (i) is split by an an-
nular mirror (AM) with inner radius r◦ = 0.6326. “Outer”
portion (ii) is relayed to the beam splitter (BS) with two unit-
magnification telescopes. “Inner” arm (iii) is demagnified
with a telescope of magnification M = 0.22 (iv), expanded
into an annulus with axicon A+ of phase ϕ(rF ) = 680 × rF ,
passed through two relay lenses, recollimated with axicon A-

of phase ϕ(rF ) = −680× rF (v), then relayed to the BS. In-
tensities illustrated in (i)-(v) have common color scale, except
(iv) which has a 5× scale to avoid saturation. Interferome-
teric signals are detected on two cameras C1 and C2 placed
at conjugate Fourier planes. Example images recorded on C1
and C2 for various z are shown in (vi). Exact distances be-
tween optical elements and diffraction integrals that describe
propagation through the apparatus are detailed in [41].

was recently demonstrated by numerically optimizing the
mean FI over a specified depth range with respect to a
chosen basis for ϕ(xF , yF ), yielding the saddle-point [31]
and tetrapod PSFs [32]. This protocol amounts to spec-
ifying a form for U , then maximizing FI w.r.t. a set of
parameters on which U depends. Here we seek a more
fundamental bound with the form of U unconstrained.
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For this we turn to previous work in quantum statistical
inference, in which the problem of maximizing FI over
all possible positive operator-valued measures has been
treated beginning some fifty years ago [22, 42, 43].

To establish the appropriate notation, suppose the
photons collected by the microscope are in the state de-
noted by the density operator ρ(x). We can then define
the quantum Fisher information (QFI) K associated with
this state [22, 42–45]:

Kij =
1

2
Re Tr ρ

(
Lxi
Lxj

+ Lxj
Lxi

)
, (8)

where Lxi is the symmetric logarithmic derivative defined
implicitly by:

∂xi
ρ =

1

2
(Lxiρ+ ρLxi) . (9)

Analogous to the relation between the CRB and FI, the
QCRB is related to the QFI by:

σ(QCRB)
xi

=
√

[K−1]ii. (10)

The QCRB defined in Eq. (10) bounds the estimation
precision for any measurement on the state ρ(x) [22].

For our purposes, we have σ
(CRB)
xi ≥ σ(QCRB)

xi , regardless
of the microscope configuration after the objective lens.

Thus we can compare σ
(CRB)
z associated with state-of-

the-art techniques to the ultimate bound set by σ
(QCRB)
z .

To proceed in computing the QFI and QCRB, we spec-
ify the single-photon state represented by:

ρ(x) =

∫∫
dAF

∫∫
dA′F g(xF , yF , x

′
F , y

′
F ;x)

× |xF , yF 〉 〈x′F , y′F | (11)

where |xF , yF 〉 = a†(xF , yF ) |0〉, and a†(xF , yF ) is
the creation operator for the specified mode, obeying
[a(x′F , y

′
F ), a†(xF , yF )] = δ(x′F−xF )δ(y′F−yF ). It should

be emphasized that the classical optical state we consider
in this work is certainly not equivalent to the highly quan-
tum mechanical one-photon state of Eq. (11). Rather
it can be shown that under the appropriate approxima-
tions (thermal light in the weak-source limit), the opti-
mal value of J described in Eq. (2) is mathematically
equivalent to K obtained by substitution of Eq. (11) in
Eq. (8) [25, 26]. We adopt a similar strategy to that
recently used to examine the related problem of resolv-
ing two weak thermal point sources [25] (which has since
inspired a number of theoretical and experimental follow-
up studies [46–57]). The problem of establishing quan-
tum bounds of localizing a single point source has also
been considered in a number of contexts over the years
[22, 43, 58]. We distinguish our work by deriving ex-
pressions for direct comparison to CRBs of existing 3D
microscopes, yielding tight bounds and facilitating proof
of the (sub)optimality of various advanced techniques.

In the Supplemental Material [41] we derive the
QCRBs for 3D localization microscopy using a single mi-
croscope objective. The results are:

σ(QCRB)
x = σ(QCRB)

y = Cxy/2, (12a)

σ(QCRB)
z =

(
C−2z − |γ|2

)−1/2
/2, (12b)

with

Cxy =

√
3

kA
√
π

[
2−

√
1− (NA/n)

2
(

2 + (NA/n)
2
)]−1/2

,

(13)

Cz =

√
3

kA
√

2π

[
1−

(
1− (NA/n)

2
)3/2]−1/2

, (14)

and

γ = ikA2π(NA/n)2. (15)

In Fig. 2 we compare the QCRBs to the CRBs pertain-
ing to several choices of microscope configuration, includ-
ing a standard microscope [Fig. 1(a)] and an astigmatic
microscope with ϕ(xF , yF ) =

√
6
(
x2F − y2F

)
(both with

NA = 1.4, n = 1.518, and λ◦ = 670 nm). Here astigmatic
imaging of this strength stands in as a representative for
similarly engineered PSFs [Fig. 1(b)], as justified by the

facts that this choice obtains the minimum σ
(CRB)
z near

z = 0 for any astigmatic strength, and that its local min-
imum compares favorably to those of other engineered
PSFs (Figs. S1 and S2 [41]). Unsurprisingly, the stan-
dard microscope obtains the QCRB for lateral localiza-
tion precision at focus. However, the minima of both the

standard and engineered configurations exceed σ
(QCRB)
z

by a factor of approximately 1.5.

FIG. 2. Photon-normalized QCRBs and measurement CRBs
for single-objective collection. For N detected photons divide
vertical axis by

√
N . (a) Lateral localization bounds. Gray

shaded region is bounded above by σ = σ
(QCRB)
x = σ

(QCRB)
y .

Blue curve: CRB for standard microscope. Red curves (solid

is σ
(CRB)
x , dotted is σ

(CRB)
y ): astigmatic microscope with

strength specified in main text. Green curve: proposed in-
terferometer. (b) Depth localization bounds. Color code cor-
responds to that in (a).
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Computing the QCRB is both straightforward and
useful, as it gives crucial context for PSF optimization
techniques [31]. Establishing conditions for a measure-
ment that attains the bound is a related topic of interest

[38, 39, 45, 59–66]. To show that σ
(QCRB)
z can indeed be

saturated using ordinary optical elements we present the
modified Mach-Zehnder apparatus depicted in Fig. 1(c),
a variant of a radial shearing interferometer [67]. Exact
specifications and the series of diffraction integrals used
to compute the CRB for the proposed interferometer are
described in detail in [41] (see Fig. S3 and related text).
In brief, the collected light is split into two parts using an
annular mirror [68]: an inner disk with support rF ≤ r◦,
and an outer ring with support rF ∈ (r◦,NA/n). In the
“outer” arm we (de)magnify the beam by a factor M ,
then stretch with a pair of axicon prisms [67, 69, 70]. The
two portions are recombined with a 50/50 beam split-
ter and the signal is detected with two cameras placed
at conjugate Fourier planes. The parameters r◦ and M

were optimized over by computing σ
(CRB)
z for a range of

values; Fig. S4 convincingly shows how an increase in

r◦ results in decreased σ
(CRB)
z only until the QCRB is

saturated [41] .

Some calculated images are shown in the inset of Fig.
1(c) for various z. We reiterate that the field is treated
classically, e.g., neglecting contributions from field op-
erators of modes in the vacuum state at the input of
the beam splitter– a fully quantum mechanical treatment
must take these into account [23, 71]. As seen in Fig.

2(b), this interferometer gives σ
(CRB)
z ≈ 1.03 × σ(QCRB)

z

near z = 0. The prefactor can be made closer to unity
by incorporating additional beam splitter stages to make
use of the essentially unused inner ring of the “outer”
arm. The proposed interferometer approximates projec-
tion onto the eigenstates of Lz (see Fig. S5 and related
text in [41]), a condition known to be sufficient for satu-
rating the single-parameter QCRB [45].

Since the signal is recorded in a conjugate Fourier
plane and is neither lateral- nor axial-shift-invariant, the
proposed interferometer is not a viable configuration for
wide-field imaging and is instead more compatible with
confocal scanning or feedback-based particle tracking. A
perhaps more experimentally attractive variant in which
the signal is integrated onto three point detectors rather
than two cameras is analyzed in Fig. S6 and gives

σ
(CRB)
z ≈ 1.05× σ(QCRB)

z near z = 0 [41]. Practical con-
siderations aside, the main goal of the preceding discus-
sion is to demonstrate that PSF engineering can indeed
recover the QCRB even when established configurations
evidently fall short. We note that a relative deteriora-
tion in lateral precision accompanies the improvement
in depth precision for this particular arrangement [Fig.
2(a)], a common occurrence in multiparameter estima-
tion. A measurement that simultaneously saturates the
3D bounds should be possible based on necessary con-

ditions presented in Refs. [38, 64, 72] (see discussion
in [41]), the specification of which we reserve for future
work.

Advanced fluorescence microscopy implementations
sometimes make use of two opposed objectives (Fig. 3)
[17–20]. We also consider the quantum bounds for lo-
calization using this geometry, for which the state to
be plugged into Eqs. (8) and (9) is given by ρ(x) =
|ψ(x)〉 〈ψ(x)| now with:

|ψ(x)〉 =
1√
2

∫∫
dA

(a)
F ψ

(
x
(a)
F , y

(a)
F ; [x, y, z]T

) ∣∣∣x(a)F , y
(a)
F

〉
+

1√
2

∫∫
dA

(b)
F ψ

(
x
(b)
F , y

(b)
F ; [−x, y,−z]T

) ∣∣∣x(b)F , y
(b)
F

〉
,

(16)

where superscripts (a) and (b) refer to the coordinates at
the back apertures of objectives a and b (Fig. 3). The
results are [41]:

σ(QCRB)
x = σ(QCRB)

y = Cxy/2, (17a)

σ(QCRB)
z = Cz/2, (17b)

where Cxy and Cz are defined as before. Dual-objective
QCRBs are depicted in Fig. 4. In an experiment the use
of two objectives would double the rate of photon de-
tections, but our normalized expressions scale this effect
away. Thus, simply detecting with two cameras without
further processing [Fig. 3(a)] leads to the same CRBs
as for the standard single-objective microscope (Fig. 4).
Another approach is to combine the signals due to objec-
tives a and b interferometrically [Fig. 3(b)] [20]. Interfer-
ometric localization microscopy is known to produce su-
perior depth localization precision relative to other com-
mon techniques [19]. Interestingly we find that this con-
figuration globally achieves the QCRB in all three di-
mensions simultaneously. Coinciding saturation of mul-
tiparameter bounds is a topic of great current interest in
quantum parameter estimation, and dual-objective col-
lection indeed satisfies necessary conditions for the ex-
istence of a measurement that saturates the 3D bounds
[38, 64, 72] (see [41]). We give further insight in [41], pro-
viding analytical expressions that prove optimality for a
simplified dual-objective interferometer. That the opti-
mality of this measurement does not depend on the un-
derlying value of x is another remarkable feature of this
finding. These results indicate that no additional optical
elements incorporated into the setup in Fig. 3(b) can lead
to decreased localization precision bounds, undercutting
the naive notion that perhaps combining interferometric
and phase engineering techniques can lead to improve-
ment.

In conclusion, by deriving the QCRB for depth local-
ization in a form relevant to advanced single-molecule mi-
croscopy techniques, we have proven the (sub)optimality
of the CRBs achievable by a number of state-of-the-art
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FIG. 3. Dual-objective collection schematics. (a) Signals col-
lected by microscope objectives a and b (MOa, MOb) detected
on two cameras without recombination. (b) Interferometric
detection. Optimal lateral localization requires an additional
reflection in one arm, enforced here by an x-oriented Dove
prism (DPx).

FIG. 4. Photon-normalized QCRBs and measurement CRBs
for dual-objective collection. For N detected photons divide
vertical axis by

√
N . (a) Lateral localization bounds. Gray

shaded region is bounded above by σ = σ
(QCRB)
x = σ

(QCRB)
y .

Blue curve: lateral CRB for non-interferometric detection.
Gold line: interferometric detection. (b) Depth localization
bounds. Color code corresponds to that in (a).

microscopy configurations. Finite background can be in-
troduced by considering the appropriate mixed photon
states, which we reserve for a future study. Our results
are relevant for ongoing research on the 3D localization
of sources of more complicated photon states, including
distinctly nonclassical states. Future work in which the
microscope’s response function is engineered to increase
information about source position (or any other esti-
mandum, e.g., molecular orientation [73]) should be car-
ried out with reference to the measurement-independent
bounds.

This material is based upon work supported by, or in
part by, the United States Army Research Laboratory
and the United States Army Research Office under Grant
No. W911NF1510548; as well as the Air Force Office of
Scientific Research Grant. No. FA9550-17-1-0371. We
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