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We present a reconfigurable topological photonic system consisting of a 2D lattice of coupled ring
resonators, with two sublattices of site rings coupled by link rings, which can be accurately described
by a tight-binding model. Unlike previous coupled-ring topological models, the design is translation-
ally invariant, similar to the Haldane model, and the nontrivial topology is a result of next-nearest
couplings with non-zero staggered phases. The system exhibits a topological phase transition be-
tween trivial and spin Chern insulator phases when the sublattices are frequency detuned. Such
topological phase transitions can be easily induced by thermal or electro-optic modulators, or non-
linear cross phase modulation. We use this lattice to design reconfigurable topological waveguides,
with potential applications in on-chip photon routing and switching.

Introduction.— Topological photonic systems have at-
tracted significant recent interest due to their poten-
tial applications as disorder-robust waveguides and de-
lay lines [1, 2]. Topological protection is, however, both
a blessing and a curse: steering the flow of light be-
tween different channels requires the ability to switch
between topological phases by inducing band inversions.
Such switching was recently demonstrated using mechan-
ical reconfiguration of microwave photonic crystals and
phononic metamaterials [3–6]. It would be interesting to
achieve similar functionality in the optical domain, par-
ticularly for on-chip applications, using dynamic recon-
figuration based on thermal, electro-optic, or nonlinear
effects [7–15]. However, existing designs for topological
photonic lattices at optical frequencies, such as helical
waveguide arrays [16–18] or coupled resonators [19–25]
are ill-suited because they are based on spatial or tem-
poral modulations and require inhomogeneous tuning to
induce phase transitions. For example, the coupled res-
onator array studied in Ref. [19] uses staggered phase
shifts to simulate the integer quantum Hall effect, re-
quiring individual control over these staggered phases.

Here we show that next-nearest neighbor hoppings pro-
vide a practical way to achieve reconfigurable topological
phases in translationally invariant optical resonator lat-
tices. Importantly, transitions between trivial and non-
trivial phases are induced by resonance frequency shifts
that are small compared to the rings’ free spectral range.
We demonstrate the reconfigurability of this system with
two examples. In the first, thermal or electro-optic tun-
ing [25, 26] of the ring resonances reroutes edge states at
an interface between trivial and non-trivial phases. In the
second example, a strong pump induces nonlinear cross-
phase modulation [27] which then triggers a topological
phase transition. The features of our model thus provide

a promising route to achieving reconfigurable topologi-
cal edge modes in optical devices, as well as for study-
ing how optical nonlinearities affect photonic topological
edge states.

We consider a 2D bipartite lattice consisting of res-
onant “site rings” coupled via off-resonant “link rings,”
with the latter positioned such that they facilitate
both nearest- and next-nearest neighbor hoppings be-
tween the sites. The two circulations of light (clock-
wise/anticlockwise) in each sublattice form a pseudo-spin
degree of freedom; within each spin sector time-reversal
(T ) symmetry is effectively broken, enabling quantum
spin Hall edge states that are immune to backscattering
as long as the spins are decoupled [19]. Similar to the
Haldane model [28], the simultaneous presence of next-
nearest neighbor hoppings and T -breaking gives rise to
a phase diagram hosting both trivial (conventional in-
sulator) and nontrivial (spin Chern insulator) phases.
By contrast, the nearest neighbor-coupled design intro-
duced by Hafezi et al. [19] broke translational symme-
try by assigning uniformly increasing phase shifts to the
link rings, resulting in a fractal Hofstadter butterfly spec-
trum [19, 21, 22, 25] and lacking simple topological tran-
sitions based on band inversions. On the other hand,
band inversions in ring resonator lattices without aperi-
odic elements can also occur in the strong coupling limit
described by scattering matrices [29–33], but strong cou-
pling implies low quality factor resonators, which is not
useful for the enhancement of nonlinear effects or delay
lines.

Figure 1(a) shows a schematic of the 2D lattice. The
site rings (shaded red and blue) are positioned on a
checkerboard lattice, while the link rings (shaded black)
are positioned such that they couple the nearest neighbor
site rings (diagonal couplings between red and blue sites)



2

δν/J

(a) (b)

(d)

C=1 C=0

C=0

C=0

M/J

link

site

site

+M

-M Δν

J

J

κ

(c) a

b

ϕ

J

a

a

bb

FIG. 1. (a) Square resonator lattice of site rings (blue, red)
with relative detuning ±M , coupled with strength J via off-
resonant link rings (black) detuned by ∆ν. All rings have
intrinsic loss κ. Dashed line indicates the unit cell. (b) De-
tailed schematic centered on a single link ring, which me-
diates both nearest-neighbor and next-nearest-neighbor cou-
plings between site rings, with coupling phases ±φ/4 and 0
respectively. (c) Tight binding model for the site ring res-
onances, consisting of a checkerboard lattice with staggered
flux ±φ = ±2π∆ν/FSR. (d) Bloch band energies δν (shaded
regions) versus site detuning M , calculated from the tight-
binding model for anti-resonant site and link rings (φ = π).
Red/blue areas indicate the sublattice the modes are local-
ized to in the large M limit. Gap Chern numbers C are
indicated and topologically nontrivial link bands occur for
|M | < 2J cscφ/2.

as well as the next-nearest neighbor site rings (horizontal
and vertical couplings between red and blue sites, respec-
tively). Furthermore, as shown in Fig. 1(b), the nearest-
neighbor couplings between site rings (diagonals) intro-
duce a direction-dependent hopping phase, which arises
from the difference in the path lengths traveled in the link
rings while hopping in different directions. The NNN
hoppings are symmetric and do not carry a direction-
dependent phase. In the absence of the NNN couplings,
the systems is gapless with a pair of Dirac points; the
NNN couplings contribute to opening a nontrivial band
gap [28, 34]. Note that unlike the system of Ref. [19],
the NN hopping phases in our system are periodic, and
therefore the lattice is translation invariant.
Tight binding model.— We derive a tight binding

model for the lattice by restricting ourselves to one of
the two decoupled circulation sectors (anticlockwise site
modes) [19], and taking the operating frequency to be

close to the resonance frequency of the site rings, which
are detuned from the link rings by ∆ν. The effective
inter-site coupling can be derived by considering two site
rings connected by a link ring, as in Ref. [21], and de-
pends on the parameter

φ = 2π∆ν /FSR, (1)

where FSR ≈ 103 GHz is the rings’ free spectral
range [21] (we assume the site and link rings have similar
dimensions).

We assume that the rings are weakly-coupled high
quality factor resonators, so that J � (∆ν, FSR), where
J is the inter-site coupling strength for antiresonant sites
and links (i.e., when φ = π). Moreover, we apply a small
detuning M between the two site ring sublattices; inver-
sion symmetry is broken for M 6= 0, which will be the
mechanism for inducing a topological transition. Using
the weak-coupling approximation to eliminate the link
ring amplitudes as modal variables, we derive the tight
binding Hamiltonian Ĥ [35]:

Ĥ =
∑
x,y

(
Ĥa + Ĥb + Ĥab + Ĥ†ab

)
, (2)

Ĥa = â†x,y

[
(2J cot

φ

2
+M)âx,y + J csc

φ

2

∑
±
âx,y±1

]
,

Ĥb = b̂†x,y

[
(2J cot

φ

2
−M)b̂x,y + J csc

φ

2

∑
±
b̂x±1,y

]
,

Ĥab = Jeiφ/4 csc
φ

2

×

[
â†x,y(b̂x,y + b̂x+1,y+1) + b̂†x,y(âx−1,y + âx,y−1)

]
.

Here, â† and b̂† are creation operators for the a and b
sublattices respectively, (x, y) are integers indexing the
lattice sites, the effective coupling is J csc φ

2 , and J cot φ2
is a coupling-induced frequency shift.

Note that the NN and NNN coupling strengths are
equal in magnitude. By contrast, in the topological pho-
tonic lattices studied in Refs. [16–22, 25], NNN couplings
are either absent or negligible compared to NN couplings.
In momentum space, the Schrödinger equation governing
the evolution of the field amplitudes ψ = (ψ(a), ψ(b)) can
be compactly written as

i∂tψ =
[
δν − Ĥ(kx, ky)

]
ψ, (3)

Ĥ = J csc(φ/2)

(
d0 + dz dx − idy
dx + idy d0 − dz

)
,

d0 = 2 cos(φ/2) + cos kx + cos ky,

dx = 4 cos(φ/4) cos(kx/2) cos(ky/2),

dy = −4 sin(φ/4) sin(kx/2) sin(ky/2),

dz =
M

J
sin(φ/2)− cos kx + cos ky.
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Here, δν ≡ ν−ν0−iκ, where ν is the operating frequency,
ν0 is the site resonance frequency, and κ � FSR is the
loss rate in each ring.

If the two types of site rings are identical (M = 0),
the two bands of Ĥ have Chern numbers C = ±1, with
a gap of size ∆ = 2J sec2(φ/8)/[1 + tan(φ/8)] ∼ 2J , con-
taining topologically protected edge states. As shown
in Fig. 1(d), we can induce a topological transition
into a trivial phase (where the bands’ Chern numbers
are zero) by varying M . The transition point lies at
M = 2J csc(φ/2) ∼ J � (∆ν, FSR). This implies that
the transition can be realized via weak physical effects,
affecting either the site rings (varyingM) or the link rings
(varying ∆ν and hence Mc). At the transition point, the
band structure contains a single Dirac point at either
(kx, ky) = (0, π) (if M > 0) or (π, 0) (if M < 0).

We have tested the validity of the tight binding model
by comparing the bulk spectrum of Ĥ to the transfer
matrix description. The spectra are in good agreement,
with band edge frequencies accurate to within 10% for the
moderate coupling strengths typically used in experiment
(J ∼ 10 GHz). For large couplings (J/FSR ≈ 0.06 for
φ = π), the two-band tight binding approximation breaks
down, in which case either a three-band tight binding
model or the full transfer matrix formalism must be used.
Details are given in the Supplementary Material [35].

Having derived an accurate tight-binding Hamiltonian,
we can use it in schemes for routing topological edge
states [3–6], manipulating topological edge states with
optical nonlinearities [9, 10, 13, 14], and other interest-
ing possibilities. Two examples are presented below.
Reconfigurable domain wall.—The resonance frequen-

cies of optical ring resonators can be actively con-
trolled using on-chip thermal [25] or electro-optic mod-
ulators [26]. By using such methods to adjust the de-
tuning M between vertical and horizontal site rings, we
can selectively induce a topological transition in part of
a lattice (without any spectral shift), producing domains
with topologically distinct gaps at the same frequency.
This would allow us to realize a reconfigurable topologi-
cal waveguide [3–6].

Fig. 2 shows an example of such a scheme. The lattice
contains two domains, with M = M1 on the left and
M = M2 on the right, with all other lattice parameters
the same. By controlling these detunings, we can define
a domain with a nontrivial gap (with M = J) and a
domain with a trivial gap (with M = 3J). In practice,
this can be accomplished by fabricating an array with
uniform site offsets νa = J and νb = −3J , and then in
each domain detuning either νa or νb by 2J . In other
words, we need only a binary shift of the site resonances
(0 or 2J), rather than the inhomogeneous shifts required
in Ref. [21], or the much stronger shifts (≈ FSR/2) in
the strongly-coupled ring lattice discussed in Ref. [32].

As shown in Fig. 2(c)–(d), we define an input port 1
that couples to a single site ring, and output ports 2 and 3
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FIG. 2. Reconfigurable topological waveguide functionality
enabled by active control of site ring detunings. The lattice
contains 8 × 8 unit cells, with two domains where M = M1

andM = M2 respectively, with κ = 0.05J and φ = π (i.e., site
and link rings detuned by FSR/2) throughout. The couplings
at the inputs and outputs are κex = 2J . (a) Transmission
curves for M1 = J and M2 = 3J ; the positions of the input
port (1) and output ports (2, 3) are shown in (c), and the
band gaps are shaded in yellow. (b) Transmission curves for
M1 = 3J and M2 = J . (c)–(d) Intensity profiles at the mid-
gap frequency δν = 0.

on opposite corners of the lattice. The input and output
couplings are described by

i∂tψ
(b)
in = (δν − iκex − Ĥ)ψ

(b)
in + i

√
2κexεin, (4)

i∂tψ
(a)
out,j = (δν − iκex − Ĥ)ψ

(a)
out,j, (5)

where κex is the input/output coupling rate, ψ(b)
in denotes

the input site, and ψ(a)
out,j (j = 1, 2) are the output sites.

From these, we can compute the steady-state transmit-
tances T1j = 2κex|ψ(a)

out,j|2/ε2in.
Fig. 2 plots the transmission spectra and mid-gap in-

tensity profiles for the two choices of interface orientation,
with κ = 0.05J , κex = 2J , and lattice size N = 8 [21].
Broad transmission maxima limited only by the intrinsic
absorption κ occur in the band gap of the array, medi-
ated by topological edge modes, with the transmission
to the alternate output port suppressed by over 30dB.
In the Supplementary Material, we show that this trans-
mission is robust against spin-conserving disorder [35],
which is the most significant source of backscattering
in typical coupled resonator optical waveguides [21, 22].
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Moreover, the large topological band gap can approach
the free spectral range in experimentally-realistic set-
tings. For example, in Ref. [25] the thermo-optic modu-
lators induced shifts of up to 0.3 FSR = 300 GHz. Em-
ploying a similar shift in this design allows for reconfig-
urable topologically-protected pass bands of width 200–
300 GHz, which is promising for wavelength-division mul-
tiplexing applications.
Pump-induced topological transition.—The tight-

binding model can also be used to design a device
exhibiting nonlinearity-controlled topological transport.
To demonstrate this, we fix the detuning M and use
cross phase modulation (acting on φ) to tune between
trivial and nontrivial phases. A strong pump, resonant
with the link rings, shifts their resonance frequency such
that [36]:

φ = φ0 − 4πνNL|ψ(s)
x,y|2/FSR, (6)

where φ0 is the coupling parameter in the absence of the
pump, νNL is the effective Kerr coefficient, and the pump
beam profile ψ(s)

x,y is governed by a square lattice tight
binding model for the link rings [35]. Assuming a uniform
pump intensity |ψ(s)

x,y|2 = I, one can calculate the band
structure and Chern numbers for a weak probe beam
using the linear tight binding model Eq. (3) with effective
coupling parameter Eq. (6); a phase transition between
trivial and nontrivial phases occurs at the critical pump
intensity I = FSR[φ0 − sin−1(2J/M)]/4πνNL.

As an example, we consider a homogeneous lattice with
M = −2.4J and φ0 = 0.65π (in the trivial phase). We
couple a monochromatic pump at frequency ν − νL =
4.6J into an edge link ring with strength κex = J/2,
solving its nonlinear propagation equation in the time
domain [35] and including moderate two photon absorp-
tion κNL = 0.1νNL representative of the resonators used
in Ref. [21]. At a critical power the pump converges to the
stable steady state shown in Fig. 3(a,b), resulting in an
average shift to the coupling parameter of φ0−φ ≈ 0.1π,
which is sufficient to induce a transition to the Chern
insulator phase for the probe field.

In Fig. 3(c), we compute the transmission spectrum
of a weak probe beam tuned to the site bands. Without
the pump, the site bands are topologically trivial and the
band gap forms a deep transmission minimum. When the
pump is applied, the mid-gap transmission is increased by
≈ 30dB due to the formation of an additional resonance
associated with a topological edge state. Fig. 3(d) plots
the probe’s intensity profile, which is directed along the
edge and to output port 2 despite the disorder induced
by the inhomogeneity of the pump.

It is interesting to note that the large increase in the
transmission of Fig. 3(c) is not easily achievable using the
previously studied self-focusing nonlinearity of a bright
probe beam. First, two-photon absorption will inevitably
result in increased attenuation of a high power probe [27].
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FIG. 3. Nonlinearity-induced topological transition. (a,b) So-
lution of the nonlinear scattering equations for a pump beam
at ν − νL = 4.6J . (a) Dynamics of link ring intensities, il-
lustrating relaxation to a stable steady state within 5ns. The
different colors denote different link rings. (b) Resulting pump
intensity profile over the 8× 8 lattice inducing a Chern insu-
lator phase at the site resonance. Red arrow indicates the
pump input position relative to the probe ports (1,2,3). (c)
Transmission spectrum at the site resonance without (blue)
and with (red) the pump beam. (d) Mid gap probe profile
when pump is applied [frequency indicated by dashed line in
(c)].

Furthermore, modulational instability may break up the
topological edge states [8, 11, 12]. On the other hand,
using this pump-probe scheme, the nonlinearity is con-
fined to the link rings, where the probe photons spend
relatively little time. Consequently, parametric mixing
processes between pump and probe are suppressed, and
to a good approximation the probe beam dynamics re-
main governed by a linear Hamiltonian, and the well-
established robustness of linear topological edge states
holds. For these reasons, pump-induced cross phase mod-
ulation is a highly promising alternative for ultrafast and
robust nonlinear switching of topological edge states.
Outlook.—We have designed a lattice of coupled ring

resonators that serves as a promising setting for electro-
optic or nonlinearly-reconfigurable topological waveguid-
ing at optical frequencies. The distinguishing feature of
this scheme is the use of a bipartite lattice; for a given
circulation, the corresponding tight-binding model is T -
broken and has both nearest-neighbor and next-nearest-
neighbor couplings, which are of equal magnitude. The
phase diagram contains both conventional insulator and
Chern insulator phases, and the lattice can be tuned be-
tween them via experimentally-accessible parameters.
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Note also that previous methods relying on aperiodic
couplings [19, 21] or dynamic modulation [20, 23, 24]
introduce an additional length or energy scale to the
system that constrains the bandwidth of the topologi-
cal phase. For example, dynamic modulation requires
the inter-resonator coupling to be much weaker than the
modulation frequency; Ref. [24] estimated a maximum
practical band gap of 33 GHz using terahertz Kerr mod-
ulation. Such constraints are bypassed in next-nearest-
neighbor coupled models, enabling broadband operation
approaching the rings’ free spectral range.

We demonstrated switching of topological edge states
based on static detuning of the link resonators or non-
linear cross phase modulation of the site resonators.
The latter requires nonlinear resonance shifts of approx-
imately 50 GHz (5% of the free spectral range), which is
well within reach of current silicon photonics technology.
Our scheme can be readily generalized other classes of
simple lattices, such as hexagonal or honeycomb lattices,
where the larger number of coupled neighbors will result
in Chern insulators with longer range coupling, broader
bandwidths, and multiple band gaps.
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