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Statistical mechanics underlies our understanding of macroscopic quantum systems. It is based on
the assumption that out-of-equilibrium systems rapidly approach their equilibrium states, forgetting
any information about their microscopic initial conditions. This fundamental paradigm is challenged
by disordered systems, in which a slowdown or even absence of thermalization is expected. We report
the observation of critical thermalization in a three dimensional ensemble of ∼ 106 electronic spins
coupled via dipolar interactions. By controlling the spin states of nitrogen vacancy color centers in
diamond, we observe slow, sub-exponential relaxation dynamics and identify a regime of power-law
decay with disorder-dependent exponents; this behavior is modified at late times owing to many-
body interactions. These observations are quantitatively explained by a resonance counting theory
that incorporates the effects of both disorder and interactions.

Nearly six decades ago, Anderson predicted that the
interplay between long-range couplings and disorder in
quantum systems can lead to a novel regime of slow, sub-
diffusive thermalization [1]. This is in stark contrast to
both conventional ergodic systems and disordered sys-
tems with short-range hopping, where disorder can ar-
rest dynamics, resulting in the breakdown of ergodicity.
Termed Anderson localization, the latter effect has been
observed in systems ranging from acoustic and optical
waves to cold atomic gases [2–4]; more recently, it has
been shown that localization can persist even in strongly-
interacting, isolated quantum systems, a phenomenon
dubbed many-body localization [5–7]. In addition to rais-
ing fundamental questions, such systems have also be-
come a basis for the exploration of novel non-equilibrium
phases of matter, including Floquet symmetry protected
topological phases [8] and discrete time crystals [9, 10].

The addition of long-range couplings tends to facili-
tate delocalization, leading to a regime where ergodicity
and localization compete [11, 12]. This so-called critical
regime is realized by dipolar spins in 3D, where a combi-
nation of power-law interactions, dimensionality, and dis-
order govern the microscopic dynamics [1, 13, 14]. Such
systems have long been explored in the context of nu-
clear magnetic resonance spectroscopy, where a wide va-
riety of techniques have been developed to effectively en-
gineer and control spin dynamics [15–19]. Despite this,
the direct observation of slow, critical dynamics in the
presence of strong, controllable disorder remains an out-
standing challenge, owing to difficulties in preparing a
low-entropy spin state, such as a polarized initial state.

In this work, we report the observation of critical dy-

namics using disordered, strongly interacting electronic
spin impurities associated with nitrogen-vacancy (NV)
centers in diamond. More specifically, we study the ther-
malization of an initially polarized spin ensemble coupled
to a bath of unpolarized spins (Fig. 1A) and quantita-
tively explain its dynamics using a resonance counting
theory. Each NV center constitutes an S= 1 spin sys-
tem with three internal states |ms = ±1〉 and |ms = 0〉,
which can be initialized, manipulated and optically read
out under ambient conditions (Fig. 1B-C). In our ex-
periments, we utilize a dense ensemble of NV centers,
where the average NV-to-NV separation of 5 nm leads
to strong dipolar interaction strength J ∼ (2π) 420 kHz,
a significantly faster timescale than typical spin coher-
ence times [20, 21]. The diamond sample was fabricated
from a high-pressure high-temperature type-Ib natural
abundance (13C 1.1%) diamond with an initial nitrogen
concentration of 100 ppm. Using high fluence electron
irradiation and in situ annealing, an NV center concen-
tration of 45 ppm was achieved [20]. Electron spin res-
onance (ESR) measurements reveal that our sample is
also characterized by a strong on-site potential disorder
W ≈ (2π) 4.0 MHz (Fig. 1D) caused by an abundance of
paramagnetic impurities as well as strain in the diamond
lattice [20].

NV centers are oriented along four different crystallo-
graphic axes of the diamond lattice. Different projections
of an external magnetic field naturally lead to distinct
energy splittings and define four unique NV groups, {A,
B, C, D}, which can be individually addressed and con-
trolled in a finite B-field via resonant microwave radia-
tion. By tuning the direction of the magnetic field, one
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FIG. 1. Experimental System. (A) Schematic depict-
ing two groups of spin ensembles interacting via long-range
dipolar interactions. An initially polarized system (red ar-
rows) coupled to a bath of unpolarized spins (blue arrows)
will eventually thermalize to an unpolarized spin state. (B)
The crystallographic structure of diamond contains four pos-
sible NV quantization axes. (C) Simplified NV level scheme
showing the spin degrees of freedom in the optical ground
state. A large zero-field splitting ∆0 = (2π) 2.87 GHz in com-
bination with a magnetic field induced Zeeman shift γB‖ leads
to individual addressability of the spin sub-levels. (D) The
lower image shows a simulated ESR scan, revealing the spin
transitions of all four NV groups {A, B, C, D}. The upper
figure shows an ESR scan of a single transition of NV spins
(blue points). Blue solid line represents a Gaussian fit with
standard deviation W , corresponding to the average disorder
in the sample.

can modify the number of spectrally overlapping groups
and hence the effective density of spins (Fig. 1D). To
directly probe the interaction strength within our sys-
tem, we perform a double electron-electron resonance
(DEER) measurement between two spectrally separated
NV groups, A and B (Fig. 2A, bottom inset). In this
measurement the spin echo protocol decouples group A
from slowly varying magnetic noise. However, the addi-
tional π-pulse on group B after half of the total evolu-
tion ensures that the dephasing induced by interactions
between the two groups is not decoupled. As depicted in
Fig. 2A, this measurement allows us to extract the inter-
action strength∼ (2π) 420 kHz [20]. By tuning additional
NV groups into spectral resonance, we can confirm that
the spin dynamics are dominated by interactions. As a
function of the number of resonant groups, ν, we find
a total dephasing rate, γT = γb + νγ0, with γb≈ 0.9 MHz
and γ0≈ 0.4 MHz, consistent with 45 ppm NV center den-
sity (Fig. 2A inset) [20]. The linear dependence of γT on
ν suggests that the dephasing is dominated by coherent
interactions, whose strength is proportional to the den-
sity of resonant NV groups. The extracted γb≈ 0.9 MHz,
a bare decoherence rate, could originate partly from the
interactions with single nitrogen defects (P1 centers).

Central to our thermalization experiments is the abil-
ity to tune both the disorder strength and interac-
tions. This is achieved by using spin-locking and
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FIG. 2. Interacting Spin Ensemble. (A) Spin echo on NV
group A (blue points) and DEER scan on groups A and B (red
points). The bottom left inset illustrates the DEER pulse se-
quence. Solid lines indicate exponential fits to the data. The
inset shows the spin echo coherence time as a function of res-
onant NV groups (blue points). The blue solid line represents
a linear fit to the data. (B) Schematic depicting the NV
level scheme during a spin-lock sequence. (C) Spin-lock co-
herence decay for low (light blue points) and high (dark blue
points) CW driving strength, showing significant extension
beyond the spin echo decoherence (gray-blue points). The
decay curves are fitted to a stretched exponential function
exp [−

√
t/T ] [22].

Hartmann-Hahn (HH) resonances, both of which rely
upon continuous microwave driving resonant with the
|ms = 0〉→ |ms = −1〉 transitions of the respective
NV groups [23, 24]. For excitation with Rabi frequency
Ω, this defines a “dressed-state” basis, |±〉≈ (|ms =
0〉± |ms = −1〉) /

√
2 (Fig. 2B). In the rotating frame,

the energies of these two states are split by the effective
on-site potential

√
Ω2 + δ2

i , where δi is the local disor-
der potential for spin i (of order W ). In the limit of
strong driving Ω� δi, we obtain an effective disorder po-
tential δ̃i with the reduced width Weff∼W 2/Ω, allowing
us to tune the disorder by simply adjusting the Rabi fre-
quency. For spin-locking, we initially polarize NVs in the
dressed-state basis. After an evolution time τ the polar-
ization can be converted back to the bare basis, yielding
a dramatic enhancement of the lifetime compared to a
spin-echo measurement (Fig. 2C). We find that the life-
time is limited by interactions with short-lived spins in
our system, which are suppressed by increasing Ω [22].
Thus, spin-locking enables us to prepare a single group
of polarized NVs with tunable disorder and long lifetime.

To control interactions, we utilize a HH resonance per-
mitting cross-polarization transfer between two spin en-
sembles [23, 24]. To this end we align the 160 Gauss mag-
netic field along the [1,2̄,3̄] direction, which allows groups
A and B to be spectrally distinguished, and at the same
time, to be isolated from the groups C and D by a de-
tuning larger than all relevant Rabi frequencies. Within
this setting, we prepare two oppositely polarized spin en-



3

A

Disorder ~ Disorder ~

Ω

W
W

Ω

2

0 10 20
2

4

6

Li
ne

w
id

th
 (M

H
z)

Ω/2π (MHz)

A B A B

0 20 40 60 80 100

Time (7s)

Po
la

riz
at

io
n 

-5 -2.5 0 2.5 5

0.8

0.9

1

Po
la

riz
at

io
n

B

 B
(Ω  - Ω ) / 2π (MHz)

 A

D

0.2

0.4

0.6

0.8

1

0.5

0.6

0.7

0.8

0.9
1

Po
la

riz
at

io
n

Ω = (2π) 4 MHz

0.5

0.6

0.7

0.8

0.9
1

Po
la

riz
at

io
n

10
0

10
1

10
2

Time (7s)

0.5

0.6

0.7

0.8

0.9
1

Po
la

riz
at

io
n

C

Ω = (2π) 7 MHz

Ω = (2π) 20 MHz

FIG. 3. Spin Cross-Relaxation. (A) Schematic depicting
two oppositely polarized groups of spins (A and B) in the
dressed-state basis. Under spin-locking with a common Rabi
frequency Ω, the effective disorder reduces from the natural
disorder W with increasing Ω, thereby enhancing the rate
of resonant spin exchange. (B) Population of group A as a
function of driving strength of group B, showing the HH res-
onance (dark blue points). Light blue data shows spin-lock
coherence without driving of other groups. The correspond-
ing solid curves represent a Lorentzian and constant fit to the
data. Inset shows the HH resonance linewidth as a function of
applied Rabi frequency. (C) Polarization dynamics of group
A interacting with an oppositely polarized (red) and unpo-
larized (blue) spin bath, group B, at the HH condition with
Ω = (2π) 9 MHz as a function of evolution time. The polar-
ized spin bath leads to faster polarization decay [20]. Dashed
lines represent an exponential decay, showing significant devi-
ation at long times. (D) Polarization decay of group A under
HH conditions with unpolarized group B for different driving
strengths. Dashed red lines are power-law fits to the data in
the time window up to the vertical line. Curved solid lines
are the fits to our theory model including time-dependent dis-
order. All errorbars correspond to 1σ.

sembles in the dressed-state basis with energy splittings
ΩA and ΩB (Fig. 3A). Figure 3B depicts the results of
a spin-lock measurement on group A as a function of
ΩB , revealing a sharp resonance with a linewidth signif-
icantly narrower than the on-site disorder strength W .
The linewidth of this resonance can be monitored as a
function of the common Rabi frequency Ω = ΩA = ΩB ,
showing a strong decrease for higher Ω caused by a re-
duction of the effective disorder Weff (Fig. 3B inset).

This method allows us to probe the thermalization dy-
namics with controlled interaction and tunable disorder.
To this end, we investigate the dynamics of an initially
polarized spin sub-ensemble (group A) in HH resonance
with another, unpolarized sub-ensemble (group B). Phys-
ically, this situation corresponds to the thermalization of

a polarized spin ensemble in contact with a spin bath
held at infinite effective temperature. To extract the co-
herent thermalization dynamics, we normalize the polar-
ization decay with a sufficiently detuned HH measure-
ment [20], wherein we observe a decay profile that fits
neither a diffusive power law (∼ t3/2) nor a simple ex-
ponential (Fig. 3C). By varying the driving strength Ω,
we find that the polarization decays faster for larger Ω,
consistent with a smaller effective disorder (Fig. 3D). In-
terestingly, the functional profiles of the decays are con-
sistent with power laws for over a decade, followed by
accelerated relaxation at late times.

To understand these observations, we turn to a theo-
retical description of our system. Spin dynamics are gov-
erned by the interplay between disorder and long-range
dipolar interactions. Working in the dressed-state ba-
sis, we find that the form of this interaction depends on
whether spins reside in the same or in distinct groups.
For spins in different groups (A and B), dipolar interac-
tions naturally lead to spin exchange. However, for spins
in the same group, the S=1 nature of the NV centers and
energy conservation in the rotating frame lead to an ab-
sence of spin exchange [20]; rather, the coupling between
spins takes the form of an Ising interaction. Thus, when
initially polarized, a spin may depolarize only through ex-
change with spins of the other group. Specifically, in the
limit of strong disorder, one expects the dynamics to be
dominated by rare resonant exchange processes between
the two groups. To describe such dynamics, we consider
a simplified model, where a single group A excitation is
located at the center of an ensemble of group B spins
(Fig 4A). The dynamics of this excitation are captured
by an effective Hamiltonian,

Heff =
∑
i

δ̃iσ
x
i −

∑
ij

Jij
r3
ij

(σ+
i σ
−
j + h.c.). (1)

where rij is the distance between spins, Jij is the ori-
entation dependent coefficient of the dipolar interaction
with typical strength J0 = (2π) 52 MHz·nm3, ~σ are spin-
1/2 operators with σ±i =σyi ± iσzi , and δ̃i =

√
Ω2 + δ2

i −Ω
is the effective quenched disorder potential. While this
single-particle model neglects the many-body nature of
our experiments such as intra-group Ising interactions
and complex dynamics of group B excitations, it cap-
tures the key features of slow relaxation in critical sys-
tems; however these additional features will be necessary
to accurately describe the long time thermalization be-
havior as discussed later.

To characterize the spin decay dynamics governed by
Heff, we calculate the survival probability, P (t), of the
excitation via a simple resonance counting analysis. For
a given disorder realization, this resonance counting pro-
ceeds as follows. Two spins at sites i and j are on reso-
nance at time t if: (1) their energy mismatch is smaller
than their dipolar interaction strength, |δ̃i− δ̃j |<βJ0/r

3
ij
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(β is a dimensionless constant of order unity), and (2) the
interaction occurs within the time-scale t, Jij/r

3
ij > 1/t.

P (t) is approximately given by the probability of hav-
ing found no resonances up to time t or equivalently up
to distance R(t)≡ (J0t)

1/3 [20]. This probability can be
computed as the product of probabilities of having no
resonant spins at any r,

P (t) =

R(t)∏
r

(
1− 4πnr2dr

βJ0/r
3

Weff

)
∝ t

−4πnβJ0
3Weff . (2)

P (t) exhibits power-law decay with a disorder dependent
exponent η= 4πnβJ0/(3Weff), where n is the density of
spins that are oppositely polarized to the central exci-
tation. This sub-exponential relaxation is the essence
of the slow critical dynamics predicted by Anderson [1].
Such single-particle power-law relaxation is also consis-
tent with results obtained from random-banded matrix
theory [14, 25] and is numerically verified for up to
N = 104 spins [20].

A detailed comparison of our experimental observa-
tions with these theoretical predictions is summarized in
Fig. 4. In order to quantify the slow dynamics, we take
subsets of our depolarization time trace over half-decade
windows, fit the data to power laws, and extract the re-
sulting exponents. Varying the starting time of the win-
dows, we find that the extracted exponents remain con-
stant up to a long time T ∗� 1/J , beyond which they in-
crease, indicating the deviation of the thermalization dy-
namics from a simple single-particle prediction (Fig. 4B).
Interestingly, the exponents scale linearly with the in-
verse effective disorder, as predicted by the counting ar-
gument (Fig. 4C). Furthermore, we find that their values
are in excellent agreement with our theory based on nu-
merical simulations of a single-particle Hamiltonian [20].

At late times (t>T ∗), the observed decay accelerates
and deviates significantly from the power law. This
is natural since the effects of multi-particle interac-
tions cannot be neglected when a significant fraction of
spins have already undergone depolarization. In particu-
lar, intra-group Ising interactions among randomly posi-
tioned spins δIi ≡

∑
j Jij/r

3
ij 〈σxj 〉 may behave as an ad-

ditional disorder that changes in time with characteris-
tic strength J/4∼ (2π) 105 kHz. Additionally, weak cou-
pling to the environment may also give rise to corrections
to our single particle model.

To understand this behavior, we extend our theory
analysis by allowing the on-site disorder to vary slowly
in time. More specifically, we assume that the disor-
der potential consists of both static and dynamical parts
with standard deviations Ws and Wd, and that the dy-
namical part changes over a correlation time τd. Re-
peating our previous analysis incorporating the effect of
dynamical disorder, we obtain a modified survival proba-
bility P̃ (t)∝ e−t/T∗

t−η with T ∗≡ 3Wsτd/(4πnβJ0) [20].
The rate 1/T ∗ thus characterizes the deviation from the
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FIG. 4. Understanding Thermalization Dynamics. (A)
Schematic of single particle resonance counting argument pre-
dicting a power-law decay profile. (B) Variation of power-law
exponents extracted from a subset of data, consisting of seven
subsequent points, swept from the beginning to the end of
thermalization time traces. Black and gray data corresponds
to the case of Ω = (2π) 4 and 9 MHz, respectively. Dotted lines
corresponds to phenomenological fits, identifying the dura-
tion over which the power-law exponents remain constant.
(C) Power-law decay exponents of group A polarization as a
function of effective disorder Weff. Dashed line corresponds to
a theoretical prediction based on the single particle resonance
counting. (D) Duration of power-law dynamics extracted for
various strengths of effective disorder Weff. Dashed line cor-
responds to a theoretical prediction based on a refined reso-
nance counting including time-dependent disorder. All error-
bars correspond to 1σ.

power-law regime, and can be intuitively understood as
the rate at which a pair of initially off-resonant spins
comes into resonance as the local potentials vary in time.
Figure 3D shows that P̃ (t) provides an excellent fit to our
observation over all time scales. Both extracted param-
eters Wd∼ (2π) 0.5 MHz and τd∼40µs are comparable
to the strength of Ising interactions and independently
measured NV depolarization time, respectively [20, 22].
This suggests that the dynamical disorder is dominated
by intrinsic contributions from Ising interactions, which
is related to the predicted thermalization enhancement
due to multi-particle resonances and higher order pro-
cesses [11, 12]. Moreover, the extracted power-law dura-
tion agrees well with the predicted linear dependence of
T ∗ on effective disorder strengths (Fig. 4D). Together,
these observations strongly corroborate our theoretical
model describing the microscopic mechanism of thermal-
ization dynamics in a critical system.

We have demonstrated that dense ensembles of NV
centers constitute a powerful platform for exploring
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quantum dynamics of strongly correlated many-body sys-
tems. Complementary to recent studies of localization in
cold atomic systems [6, 7], these spin systems exhibit
slow, disorder-dependent relaxation associated with crit-
ical thermalization dynamics. The quantitative agree-
ment between the observed spin relaxation and reso-
nance counting theory demonstrates that the dynamics
are dominated by rare resonances. Moreover, the ob-
served deviations from single-particle theory reveal the
subtle role that many-body effects can play in such sys-
tems. These studies can be extended along several di-
rections. A higher degree of spatial quantum control can
be obtained via spin-based sub-wavelength imaging tech-
niques [26]. Advanced dynamical decoupling can enable
the engineering of a broader class of interaction Hamil-
tonians and the direct measurement of quantum entan-
glement dynamics [27, 28]. The use of strong magnetic
field gradients or the fabrication of diamond nanostruc-
tures can allow for the exploration of spin dynamics in
lower dimensional systems [29], where the existence of
many-body localization is still in debate [11, 13]. In
combination, these directions may enable the study of
dynamical phase transitions from localization to ther-
malization [6, 30, 31] as well as exotic non-equilibrium
phases of matter [8–10].
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