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We study the impact of three-body physics in quenched unitary Bose gases, focusing on the role of
the Efimov effect. Using a local density model, we solve the three-body problem and determine three-
body decay rates at unitary, finding density-dependent, log-periodic Efimov oscillations, violating
the expected continuous scale-invariance in the system. We find that the breakdown of continuous
scale-invariance, due to Efimov physics, manifests also in the earliest stages of evolution after the
interaction quench to unitarity, where we find the growth of a substantial population of Efimov
states for densities in which the interparticle distance is comparable to the size of an Efimov state.
This agrees with the early-time dynamical growth of three-body correlations at unitarity [Colussi et
al., Phys. Rev. Lett. 120, 100401 (2018)]. By varying the sweep rate away from unitarity, we also
find a departure from the usual Landau-Zener analysis for state transfer when the system is allowed
to evolve at unitarity and develop correlations.
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Over the past few years, the study of strongly interact-
ing Bose gases has greatly intensified due to the experi-
mental advances with ultracold atoms [1–10], unraveling
universal properties and other intriguing phenomena [11–
32]. Although ultracold quantum gases have extremely
low densities, n, the unique ability to control the strength
of the interatomic interactions —characterized by the
s-wave scattering length, a— via Feshbach resonances
[33] allows one to probe the unitary regime (n|a|3 ≫ 1),
where the probability for collisions can reach unity value
and the system becomes non-perturbative. In contrast to
their fermionic counterparts [34–36], unitary Bose gases
are susceptible to fast atomic losses [37] that can pre-
vent the system from reaching equilibrium. In Ref. [3],
a quench of the interactions from weak to strong allowed
for the study of the dynamical evolution and equilibra-
tion of the unitary Bose gas, thanks to the surprisingly
slow three-body decay rates [17]. By making the unitary
regime accessible, this new quenched scenario opened up
intriguing ways to study quantum few- and many-body
non-equilibrium dynamics in a controlled manner [38–43].

Our understanding of how correlations evolve and sub-
sequently equilibrate in quenched unitary Bose gases
is evolving as recent experiments probe physics in this
regime [1–6, 8–10]. Most of the current theoretical ap-
proaches, however, are based on the two-body physics
alone, leaving aside the three-body Efimov physics [44–
50]. In particular, at unitarity (|a| = ∞), although no
weakly bound two-body state exists, an infinity of Efi-
mov states form. Critical aspects such as the three-body
loss rates and dynamical formation of Efimov state pop-
ulations remain unexplored within the non-equilibrium
scenario of quenched unitary Bose gases.

In this Letter, we explore various aspects related to
the three-body physics in quenched unitary Bose gases.

We solve the three-body problem using a simple local
model, incorporating density effects through a local har-
monic trap and describing qualitatively Efimov physics
embedded in a larger many-body system. Within this
model, we determine loss rates at unitarity that display
density-dependent, log-periodic oscillations due to Efi-
mov physics. We also analyze the dynamical formation
of Efimov states when the quenched system is held at uni-
tarity and then swept away to weak interactions. This
scheme was recently implemented for an ultracold gas of
85Rb atoms [8], where a population of Efimov states in
a gas phase was observed for the first time. Our present
study analyzes such dynamical effects and demonstrates
that for densities where the interparticle distance is com-
parable to the size of an Efimov state, their population
is enhanced. This is consistent with a recent theoretical
study on the early-time dynamical growth of three-body
correlations [30], providing additional evidence for the
early-time violation of the universality hypothesis for the
quenched unitary Bose gases [11]. By studying the de-
pendence of the populations on the sweep time, we find
a departure from the usual Landau-Zener model of the
state formation as the system evolves at unitarity and
develops correlations.
Within the adiabatic hyperspherical representation

[51–54], the total three-body wave function for a given
state β is decomposed as

ψβ(R,Ω) =
∑

ν

Fβν(R)Φν(R; Ω), (1)

where Ω collectively represents the set of all hyperan-
gles, describing the internal motion and overall rotations
of the system, and the hyperradius, R, gives the overall
system size. The channel functions Φν are eigenstates of
the hyperangular part of the Hamiltonian (including all
interatomic interactions) whose eigenvalues are the hy-
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perspherical potentials, obtained for fixed values of R.
Bound and scattering properties of the system are deter-
mined by solving the three-body hyperradial Schrödinger
equation,

[

− ~
2

2µ

d2

dR2
+Wν(R)

]

Fν(R)

+
∑

ν 6=ν′

Wνν′(R)Fν′ (R) = EFν(R), (2)

where µ = m/
√
3 is the three-body reduced mass and

ν an index that includes all quantum numbers necessary
to characterize each channel. The hyperradial motion
is then described by Eq. (2) and is governed by the ef-
fective three-body potentials Wν and nonadiabatic cou-
plings Wνν′ . In our model, we assume atoms interact via
a Lennard-Jones potential, v(r) = −C6/r

6(1 − λ6/r6),
where C6 is the dispersion coefficient [33], and λ is a pa-
rameter adjusted to give the desired value of a, tuned
such that only a single s-wave dimer can exist [55]. The
correct three-body parameter [54, 56, 57], found in terms
of the van der Waals length rvdW = (mC6/~

2)1/4/2 [33],
is naturally built into this potential model, providing a
more realistic description of the problem.
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FIG. 1. (a) Energies, Eβ [in units of ǫlon = ~
2(6π2nlo)

2/3/2m],
of three-identical bosons at |a| = ∞ as a function of the lo-
cal density, nlo. The dashed green lines represent the free
space Efimov state energies. (b) The corresponding popu-
lation of three-body states, |cβ |

2, for quenching to unitarity.
The shaded region marks the range of densities where we have
studied the dynamical formation of Efimov states.

In order to qualitatively incorporate density effects
in our calculations, we introduce a local harmonic con-
finement whose properties are determined from the av-

erage atomic density, 〈n〉 [17, 58–60]. This allows us
to connect local few-body properties to density-derived
scales of the gas, including the system’s energy, ǫn =
~
2(6π2〈n〉)2/3/2m, length scales, k−1

n = ~/(2mǫn)
1/2,

and time scales, tn = ~/ǫn. In the hyperspherical rep-
resentation, local harmonic confinement is achieved by
adding a hyperradial harmonic potential [61, 62],

Vho(R) =
µ ω2

ho

2
R2, (3)

to the effective potentials Wν in Eq. (2). Here, ωho =
~/ma2ho is the trapping frequency and aho is the oscil-
lator length. A priori, there is no unique way to relate
the harmonic confinement in our model to the atomic
density. Nevertheless, as shown in Refs. [17, 25, 30, 58–
60], calibrating the local trapping potential [Eq. (3)] to
match the few-body density with the interparticle spac-
ing (∼ 〈n〉−1/3) qualitatively describes the larger many-
body system for time scales shorter than tho = 1/ωho.
Here, we relate the local atomic density, nlo, and local
trapping potential by

nlo =

[

4π

3

〈

ψi

∣

∣R3
∣

∣ψi

〉

]−1

∝ 1

a3ho
, (4)

where ψi is the three-body wave function of the lowest
trap state in the regime of weak interactions. The re-
sults of this Letter were obtained using ψi relevant for
the 85Rb experiment [8], in which the pre-quench, initial
state corresponds to a ≈ 150a0.
In free space, and in the absence of a background gas,

the energies of Efimov states at unitarity, E3b, accumu-
late near the free-atom threshold (E = 0), and their cor-
responding sizes, R3b, increase according to the charac-
teristic log-periodic geometric scaling [46]:

E
(j)
3b = − ~

2κ2∗/m

(eπ/s0)2j
and R

(j)
3b =

(1 + s20)
1

2

(3/2)
1

2 κ∗
(eπ/s0)j , (5)

where j=0, 1, ..., labels each Efimov state according to
their excitation, κ∗ ≈ 0.226/rvdW is the three-body pa-
rameter [54], and eπ/s0 ≈ 22.7 is Efimov’s geometric
factor for identical bosons. In the unitary Bose gas, how-
ever, one expects that only Efimov states with binding
energies larger than ǫn, and sizes smaller than k−1

n are in-
sensitive to the background gas and can exist in their free-
space form. Otherwise, Efimov states should be sensitive
to the background gas, represented here by a local trap-
ping potential. To illustrate this sensitivity within our
model, the energy levels, Eβ , of three-identical bosons at
|a| = ∞ as a function of nlo are shown in Fig. 1(a), dis-
playing geometric scaling as nlo is increased by a factor
(eπ/s0)3 ≈ 1.17 × 104. Within our model, as the en-
ergy of a Efimov state approaches ǫlon its value is shifted
away from its value in free-space [green dashed lines in
Fig. 1(a)]. In order to describe loss processes within our
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model, we have also provided a finite width (lifetime) for
the states, Γβ (τβ = ~/Γβ), adjusted to reproduce the
known behavior of the Efimov physics in 85Rb [63] —see
Supplementary Material [55].
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FIG. 2. Three-body decay rate, Γ∗

3, for
85Rb at |a| = ∞ as

a function of the average density, 〈n〉. This figure display the

〈n2/3〉 scaling of the decay rate as well as the appearance of
log-periodic oscillations associated with Efimov physics. Res-
onances at higher 〈n〉 occur when the initial state is degener-
ate with one of the possibly weakly-coupled final states in our
model. Dashed black curve is the fitting function in Eq. (8).

Besides the three-body eigenenergies, our model also
provides wave functions that determine various proper-
ties of the quenched system. After quenching to the uni-
tary regime, the time evolution of the three-body system
is described by the projected three-body wave function,

Ψ(R,Ω, t) =
∑

β

c
(u)
β ψ

(u)
β (R,Ω)e−i(Eβ−iΓβ/2)t/~, (6)

which is a superposition of states at unitary, ψ
(u)
β , with

coefficients determined from their overlap with the initial

state, c
(u)
β = 〈ψ(u)

β |ψi〉. Within our local model, however,
the wave function in Eq. (6) can only be expected to
qualitatively represent the actual many-body system for
t < tn, since beyond this time scale genuine many-body
effects should become important. Figure 1(c) shows the
population at unitarity, |cβ |2, for various states as a func-
tion of nlo. We observe that the population of a given
state becomes substantial when its energy or size is in
the vicinity of the density-derived scales of the unitary
Bose gas (ǫn and k−1

n , respectively).
The above results suggest that Efimov physics may

manifest in the density dependence of relevant observ-
ables since the atomic density sets the energy and length
scales of the gas. We first focus on the three-body decay
rates, which can be simply evaluated within our model
from [17]

Γ∗
3 = − lim

t→0

ṅ(t)

n(t)
=

∑

β

|c(u)β (nlo)|2
Γβ(nlo)

~
, (7)

where n(t) = nlo|〈Ψ(R,Ω, t)|Ψ(R,Ω, t)〉|. In a local den-
sity model, the decay rate in Eq. (7) is averaged over

the local density nlo. Using a Thomas-Fermi density pro-
file, our numerical calculations indicate that the averaged
rate is well approximated (within no more than 4%) by
replacing nlo with the corresponding average density 〈n〉
in Eq. (7). Our results for the three-body decay rate for
the quenched unitary Bose gas are shown in Fig. 2, cov-
ering a broad range of densities. We find the expected
〈n2/3〉 scaling [8, 19, 21] but also log-periodic oscillations
that originate from the increase of an Efimov state pop-
ulation whenever its binding energy is comparable to ǫn
(see Fig. 1). We fit these oscillations as

Γ∗
3 ≈ η

~

m

[

A+ B sin2
(

s0 ln
〈n〉1/3

r−1

vdW

+ φ
)

]

〈n2/3〉 (8)

where A ≈ 15.9, B ≈ 8.80, and φ ≈ 1.61 —see dashed
black curve in Fig. 2. Our numerical calculations, al-
though largely log-periodic, are slightly asymmetric. The
results shown in Fig. 2 have roughly 40% lower amplitude
than the experimental decay rate for 85Rb [8], however,
the oscillation phase is consistent with preliminary ex-
perimental observations [64]. While our results account
for losses at unitarity only, the experimental data was
obtained after a B-field sweep to weak interactions [8],
thus allowing for additional atom loss. Nevertheless, the
existence of the log-periodic oscillations in Fig. 2, with a
substantial amplitude, violates the universality hypoth-
esis [11], in which all observables related to the unitary
Bose gas should scale continuously as powers of n. Equa-
tion (8) depends only on the system parameters rvdW and
η for a particular atomic species.
We now shift our focus to the dynamical formation of

weakly bound diatomic and Efimov states in quenched
unitary Bose gases. In fact, in the recent 85Rb exper-
iment of Ref. [8] a population of such few-body bound
states was obtained by quenching the system to unitary,
evolving for a time tdwell, and subsequently sweeping the
system back to weaker interactions (a ≈ 700a0) within
a time tsw. There is still, however, much to be under-
stood on the dependence of populations on the various
parameters (n, tdwell, and tsw) and the possible connec-
tions to the non-equilibrium dynamics in the unitary
regime. In order to address some of these questions
we focus initially on the case tsw ≪ tn, where ramp-
ing effects are minimized, and solve the time-dependent
three-body Schrödinger equation following the same ex-
perimental protocol of Ref. [8] described above —see also
Refs. [55, 65]. Figure 3(a) shows the three-body energy
spectrum for a given density and for a range of a rele-
vant for the 85Rb experiment. For this particular den-
sity, 〈n〉 ≈ 9.9 × 1010cm−3, only the ground- [β = 0,
not shown in Fig. 3(a)] and first-excited Efimov states
(β = 1) have sizes smaller than the average interatomic
distance. The black solid line in Fig. 3(a) is the energy
of the (free-space) diatomic state, −~

2/ma2, while the
red curves following along this threshold correspond to
atom-diatom states, and those following along the E = 0
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FIG. 3. (a) Three-body energy spectrum for 〈n〉 ≈ 9.9× 1010cm−3 within a range of a relevant for the 85Rb experiment. Black
solid line corresponds to the energy of the (free-space) diatomic state (~2/ma2). (b) Corresponding change of population during
the field sweep (tsw ≈ 0.17tn) obtained immediately after the quench (tdwell = 0). (c)-(e) Population fraction of diatomic and
Efimov states formed as a function of tdwell illustrating the enhancement of Efimov state formation as the density approaches
the characteristic value 〈n∗

1〉 ≈ 5.2 × 1010cm−3 [Eq. (9)] or, equivalently, when knR3b ≈ 0.78(2) [30].

threshold correspond to three-atom states. Figure 3(b)
shows the population changes during the sweep of the
interactions (tsw ≈ 0.17tn) from |a| = ∞ to a ≈ 700a0,
for a case in which the system is not held in the unitary
regime (tdwell = 0). Whenever tdwell = 0, the popula-
tion of few-body bound states develops entirely during
the interaction sweep. To quantify the population dy-
namics, we define the fraction of formed two-body states,
f2b = (2/3)

∑

β |cβ |2, and Efimov states, f3b =
∑

β |cβ |2,
after the sweep [55]. For the parameters of Fig. 3(b),
we find that f2b and f3b are approximately 0.095 and
0.004, respectively, with the remaining fraction of atoms
unbound.

To explore how the time-evolution of the system at
unitarity impacts the formation of two- and three-body
bound states, we study their dependence on tdwell over a
range of atomic densities [see shaded region in Fig. 1(b)].
Figure 3(c) shows that for a relatively low density where,
although f2b grows fast and reaches appreciable values,
f3b still remains negligible for all tdwell. A larger popula-
tion of Efimov states, however, is observed for higher den-
sities [see Figs. 3(d) and (e), and Ref. [55].] In general,
we find that for short-times f2b ∝ tdwell and f3b ∝ t2dwell,
consistent with the early-time growth of two- and three-
body correlations found in Ref. [30]. Also, in Ref. [30], it
was observed that at early-times the largest enhancement
of three-body correlations occurred at densities where the
average interatomic distance is comparable to the size
of an Efimov state. More precisely, this occured when
knR3b = 0.74(5), associated with a characteristic density

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5 0  0.1  0.2  0.3  0.4  0.5

FIG. 4. Dependence of f2b and f3b on tsw for (a)-(b) 〈n〉 ≈
9.9 × 1010cm−3 and (c)-(d) 9.7 × 1011cm−3. For tdwell = 0,
the dependence on tsw is well described by the Landau-Zener
results (see text) while for tdwell = 0.5tn [(b) and (d)] the
growth of correlations lead to the enhancement of the trimer
population and a departure from the Landau-Zener results.
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value

〈n∗
j 〉 ≈ 0.41

(3/2)1/2

4π2(1 + s20)
3/2

κ3∗
(eπ/s0)3j

. (9)

For the range of densities explored in the 85Rb exper-
iment [8] the relevant characteristic density is 〈n∗

1〉 ≈
5.2× 1010cm−3. In fact, Figs. 3 (c)-(e) display a marked
change in the dynamics of f3b as 〈n∗

1〉 is approached from
below and then exceeded. In Figs. 3 (c)-(e) we also dis-
play the corresponding values for knR3b. For densities
beyond 〈n∗

1〉 (see also Ref. [55]) the population of Efimov
states is clearly enhanced and can be attributed to the
growth of few-body correlations [30]. Within our model,
such enhancement is also consistent with the increase of
population of the first-excited Efimov state at unitarity
[see Fig. 1(b)].
Correlation growth can also be further studied by in-

vestigating the dependence of the populations on tsw,
shown in Fig. 4 for two densities and for tdwell = 0 and
0.5tn. For tdwell = 0 [Figs. 4(a) and (c)], i.e., in ab-
sence of time evolution at unitarity and the correspond-
ing growth of correlations, the dependence of the popula-
tions on tsw is well described by the Landau-Zener result:
f = fm(1 − e−tsw/tm), where fm is the final population
and tm the time scale related to the strength of the cou-
plings between the states involved in the process [60, 66].
These findings are drastically changed as the system is
allowed to evolve at unitarity, coinciding with the growth
of few-body correlations [30]. In that case, as shown in
Figs. 4(b) and (d), the population dynamics departs from
the Landau-Zener results. For tdwell 6= 0, there is a clear
enhancement of f3b —even at tsw = 0— which, in some
cases [Fig. 4(d) and Ref. [55]], can lead to a population
of Efimov states exceeding that of diatomic states.
In summary, solving the three-body problem in a lo-

cal harmonic trap, designed to reflect density effects, we
highlight the importance of Efimov physics in quenched
unitary Bose gases. Within our model, the continuous
scaling invariance of unitary Bose gases is violated in rel-
evant three-body observables. In the three-body decay
rates, this violation manifests through the appearance
of log-periodic oscillations characteristic of the Efimov
effect. In the early-time population growth of Efimov
states after the system is swept away from unitarity it
manifests through a marked change in dynamics as the
density exceeds a characteristic value corresponding to a
length scale matching that of the Efimov state size and
interparticle spacing. Furthermore, our study character-
izes the growth of correlations at unitarity through the
early-time dynamics of the population of diatomic and
Efimov states. This is shown to be qualitatively consis-
tent with the early-time growth of two- and three-body
correlations at unitarity observed in Ref. [30]. Moreover,
we find that the departure from the Landau-Zener re-
sults for the populations in the non-equilibrium regime
can also be associated with the increase of correlations in

the system. An experimental study of the predictions of
our model is within the range of current quenched uni-
tary Bose gas experiments.
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