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We show how a characteristic length scale imprinted in the galaxy two-point correlation function,
dubbed the linear point, can serve as a comoving cosmological standard ruler. In contrast to the
Baryon Acoustic Oscillation peak location, this scale is constant in redshift and is unaffected by non-
linear effects to within 0.5 percent precision. We measure the location of the linear point in the galaxy
correlation function of the LOWZ and CMASS samples from the Twelfth Data Release (DR12) of
the Baryon Oscillation Spectroscopic Survey (BOSS) collaboration. We combine our linear-point
measurement with cosmic-microwave-background constraints from the Planck satellite to estimate
the isotropic-volume distance DV (z), without relying on a model-template or reconstruction method.
We find DV (0.32) = 1264±28 Mpc and DV (0.57) = 2056±22 Mpc respectively, consistent with the
quoted values from the BOSS collaboration. This remarkable result suggests that all the distance
information contained in the baryon acoustic oscillations can be conveniently compressed into the
single length associated with the linear point.

There is widespread consensus that Baryon Acous-
tic Oscillations (BAO) in the large-scale distribution of
galaxies can be used to infer cosmic distances, thus pro-
viding insight on the nature of dark energy in the universe
(see e.g., [1, 2]). Future galaxy surveys such as Euclid,1

DESI,2 and WFIRST3 have been designed to measure the
BAO signal in galaxy-clustering observables with statis-
tical errors of a few percent. However, at this level of
precision the BAO imprint differs from the linear-theory
prediction due to non-linear growth of the late-time clus-
tering of the matter (see e.g., [3–6]).

Non-linear effects smear out the amplitude of the BAO
signal and shift the location of the BAO peak in the
galaxy two-point correlation function (CF), or equiva-
lently, they damp and modify the locations of the BAO
oscillations in the galaxy power spectrum. These effects
can introduce systematic errors in the estimation of cos-
mic distances, and consequently in inferred cosmological
parameters. A 1% error in peak position leads to a 4%
error in the determination of the dark-energy equation of
state at redshift z = 1 (see e.g., [7]). Because of this, a
number of techniques have been developed to standardize
BAO distance measurements, although at the expense of
introducing numerous caveats. Recent work by some of
us has shown that there exists a characteristic point in
the two-point correlation function on BAO scales, which

1 http://sci.esa.int/euclid/
2 http://desi.lbl.gov
3 https://wfirst.gsfc.nasa.gov

we dubbed the linear point (LP), that it is largely insen-
sitive to non-linear effects [8].

In this letter, we demonstrate that the LP can be used
cleanly and simply as a cosmological comoving standard
ruler without reconstruction or other theory-rich post-
processing of the observational data. Thus, the LP re-
stores the BAO to its originally envisaged status as a
standard ruler, rather than a standardizable one.

Early in the history of the universe, overdensities in
the nearly homogeneous dark matter, by then decoupled
from the plasma of ordinary baryonic matter and radia-
tion, began to collapse under gravity. This collapse gen-
erated spherical acoustic waves, which propagated out-
ward from the collapsing overdensities. As the universe
cooled, the photons in the plasma eventually decoupled
from the baryons, and diffused away from the concen-
trations of baryons and dark matter. Meanwhile the
baryons’ momentum redshifted away leaving them nearly
in place in the final location of the acoustic wavefront.
The result was baryon and dark matter overdensities at
the locations both of the original inhomogeneities and
of the spherical wavefronts of the outward-going acous-
tic waves. These overdensities became preferred sites for
galaxy formation. We are able therefore to observe the
relic traces of these acoustic waves both in the cosmic
microwave background (CMB) – the photons that decou-
pled from the plasma – and in the spatial correlations of
cosmic structures, which were assembled much later.

Because the overdensities all began to collapse at es-
sentially the same time, and because the acoustic waves
were propagating through a homogeneous background,
the size that the spherical wavefront reached, known as

http://sci.esa.int/euclid/
http://desi.lbl.gov
https://wfirst.gsfc.nasa.gov
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the sound horizon, is universal – the same for each sourc-
ing overdensity. It depends, to be sure, on the expansion
history of the universe during that epoch, and on the
properties of the cosmological plasma, but not on the
spectrum or amplitude of the fluctuations.

The initial overdensities and the resulting acoustic
waves were of low amplitude, so the relevant early-
universe physics is very nearly linear. The properties
of the acoustic oscillations and their impact on the CMB
have therefore been computed precisely and accurately
as a function of cosmological parameters. Measurements
of the CMB temperature and polarization power spectra
have consequently afforded us quite precise estimates of
those cosmological parameters.

The evolution of cosmic structure is more complicated.
Galaxies, the leading tracers of the BAO, are non-linear
structures. Determining the precise relation between the
measured galaxy correlation function or power spectrum
and the primordial power spectrum and other cosmo-
logical properties therefore involves understanding the
non-linear growth of dark matter and associated bary-
onic structures, with all of the attendant mode-coupling
and complicated baryonic physics.

A variety of techniques have been developed to extract
information from the BAO (see e.g., [9–13]). However, to
achieve the accuracy and precision necessary to make the
BAO constraints relevant to modern cosmology, all cur-
rent methods involve modeling the effects of non-linear
physics on the BAO [4, 14]. For example, reconstruction
methods [10, 12] correct for non-linear effects using ap-
proximate non-linear treatments. Values for the galaxy-
matter bias and for the growth rate are inputs to the al-
gorithms. This data manipulation amplifies the acoustic
peak signal-to-noise and leads to a more precise determi-
nation of cosmic distances. However, as a consequence,
information contained in the shape and amplitude of the
CF is lost [15].

Alternatively, one may search for features at BAO
scales that are insensitive to the non-linearities of the
matter distribution. The LP introduced in [8] is such a
feature; it is defined by the mid-point between the posi-
tion of the peak and the dip in the two-point correlation
function of the matter-density field as well as of biased
tracers such as dark matter halos. In particular, in N-
body simulations of a ΛCDM model, the amplitude of
the correlation function at the LP is only very weakly af-
fected by non-linearities and scale-dependent bias, while
its comoving position remains unaltered compared to the
linear-theory prediction at percent-level precision, inde-
pendent of the normalization amplitude of the primor-
dial power spectrum and the scalar spectral index. In
addition, given its data-driven definition, no ad hoc esti-
mators need to be employed: we use a generic low-order
polynomial to fit the galaxy correlation function and ex-
tract the LP value [16]. This is why the LP can serve
as a clean standard ruler. In the following we show how

the LP can be employed to precisely estimate cosmic dis-
tances from galaxy clustering data.

Let us consider the monopole term ξ0 of the two-point
correlation function of galaxies. This is usually expressed
in terms of the comoving separation s(z). However,
comoving distances are not directly measured; rather,
galaxy redshifts are converted into comoving space (real
space) by assuming a fiducial cosmology. Then, the data
are fit to a fixed fiducial template ξfixed

0 (α sfid(z)) to de-
termine the shift parameter α from which cosmic distance
constraints are inferred (see e.g., [9, 17]).

The dependence on the fiducial cosmology can be
avoided altogether by working with the rescaled vari-
able y ≡ s(z)/DV (z), where DV (z) is the conventional
isotropic-volume distance estimator

DV (z) ≡
[
(1 + z)2DA(z)2 cz

H(z)

]1/3

, (1)

where H(z) is the Hubble rate, DA(z) is the angular-
diameter distance, and c is the speed of light. As pointed
out in [18], in this rescaled variable the relation

ξ0(sfid(z)/Dfid
V (z)) ' ξ0(strue(z)/Dtrue

V (z)) (2)

holds to a very good approximation. Corrections due to
the Alcock-Paczynski effect are negligible on BAO scales,
provided that the fiducial value of the cosmic matter den-
sity is sufficiently close to the true value [19]. It is worth
remarking that Eq. (2) is a purely geometric statement
that applies only when sfid(z) and strue(z) are extracted
from data without reference to a cosmology-dependent
theoretical template ξth

0 .
Since the LP identifies a comoving scale in the corre-

lation function that does not evolve (i.e., it is constant
in comoving coordinates) and that is immune to non-
linear effects, we can exploit Eq. (2) in combination with
CMB constraints to infer the cosmic distance at the cen-
tral redshift z̄ of the galaxy-survey sample. More pre-
cisely, we can estimate strue

LP (z̄) using CMB information,
since strue

LP (z̄) = strue
LP (zlin), where strue

LP (zlin) is the linear
point in the correlation function predicted from the linear
theory (say for the best-fit Planck cosmological model4).
Substituting in Eq. (2),

strue
LP (zlin)

Dtrue
V (z̄)

=
sfid
LP (z̄)

Dfid
V (z̄)

= yLP (z̄) , (3)

where yLP (z̄) is the location of the rescaled LP measured
in the galaxy correlation function at z̄. Finally, the above
equation can be inverted to infer the value of Dtrue

V (z̄).

4 In practice we compute strue
LP (zlin) from the linear correlation

function at sufficiently high redshift where the linear theory is
valid (e.g., zlin = 10).
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FIG. 1: Linear point measurement in the galaxy clustering
correlation function monopole. Black dots show the LOWZ
and CMASS correlation functions released by the BOSS col-
laboration [20]. Red dots represent the linear point measure-
ments and the continuous black line the quintic polynomial
ξ0(y) interpolation needed to extract it.

We remark that strue
LP (zlin) is insensitive to the late-time

acceleration of the Universe. On the other hand, yLP(z̄)
strongly depends on DV , and hence on the acceleration
at redshift z̄. This is the relevant feature of a comoving
standard ruler.

In the following, we use the LP to estimate the
isotropic-volume distance from the two-point correlation
functions of the LOWZ and CMASS galaxy samples ob-

tained by the BOSS collaboration.5 In particular, we
use the “pre-reconstruction” Data Release 12 (DR12)
monopole correlation function presented in [20].6

Galaxy redshifts and angles have been converted into
comoving distances assuming a ΛCDM fiducial cosmol-
ogy specified by the following parameter values: Ωm =
0.29, Ωbh

2 = 0.02247, h = 0.7, ns = 0.97 and σ8 = 0.8.
The observed galaxy positions have not been corrected
for peculiar motions. The central redshift of the LOWZ
and CMASS samples are respectively z̄ = 0.32 and 0.57.

We convert comoving distances s to y using the BOSS
fiducial cosmology. The correlation-function measure-
ments around the BAO scales are shown in Fig. 1. We
fit each ξ0(y) with a quintic polynomial and define the
linear point as the midpoint of the peak and the dip in
ξ0(y). We refer the reader to a companion paper [16] for
a detailed description of our model-independent proce-
dure to estimate the LP, which we validated using syn-
thetic data. As discussed in [8], we increase this value
of LP by 0.5% to allow for a small secular evolution of
sLP from high to low redshifts. This caps the system-
atic error on the determination of the LP to 0.5% over
the full range of redshifts. We find yLP (z̄LOWZ−DR12 =
0.32) = 0.1094±0.0024 and yLP (z̄CMASS−DR12 = 0.57) =
0.06724± 0.00073.

We estimate strue
LP (zlin) in Eq. (3) for a ΛCDM cosmol-

ogy best-fit to the Planck-TT,TE,EE+lowP anisotropy
power spectra [22] from the linear matter correlation
function ξ0(s) computed using the CAMB code [23]. We
find sPlanck

LP = 138.24 Mpc. We neglect statistical er-
rors due to the propagation of the Planck cosmologi-
cal parameter uncertainties, which are expected to be
negligible within the ΛCDM scenario (as in the case
of the sound-horizon scale rd).7 Then, from Eq. (3),
DLP

V (z̄) = sPlanck
LP /yLP (z̄) and we derive

DLP
V (z̄LOWZ = 0.32) = (1264± 28) Mpc

DLP
V (z̄CMASS = 0.57) = (2056± 22) Mpc .

It is worth comparing these results to those obtained by
the BOSS collaboration using the standard BAO method
[20]. For the same pre-reconstruction data as employed

5 https://www.sdss3.org/surveys/boss.php
6 In the final galaxy clustering analysis performed by the BOSS

collaboration [21] the galaxy sample survey volumes were chosen
to be equal. Here we focus on the CF analysis presented in [20],
which allows us to test the LP estimation procedure for different
survey volumes as provided by the LOWZ and CMASS samples.

7 Notice that both sLP and rd are independent of the values of
the parameters describing the power spectrum of the primordial
density fluctuations [8] in inflationary ΛCDM, so the errors in rd
and sLP are expected to be of the same order.

https://www.sdss3.org/surveys/boss.php
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here, they quote8

DBOSS;pre−recon
V (z̄LOWZ = 0.32) = (1247± 37)Mpc

DBOSS;pre−recon
V (z̄CMASS = 0.57) = (2043± 27)Mpc.

Hence the LP provides distance estimates with statisti-
cal uncertainties that are 24% and 18% smaller than the
standard approach for the LOWZ and CMASS samples
respectively.

It is finally worth emphasizing that the LP approach
is complementary to standard BAO with reconstruction.
Reconstruction uses the information encoded in N-body
simulations of non-linear physics to amplify the BAO
signal-to-noise. It therefore depends on the accuracy of
that information, and is valid over the range of models
and parameters in which the simulations accurately re-
flect the non-linear physics. The LP, in contrast, relies
on the simulations only to estimate the errors in the LP
estimator and to validate its insensitivity to non-linear
physics. That insensitivity extends beyond ΛCDM to
include late-time smooth dark energy models, such as
standard and clustering quintessence, whose non-linear
propagator shows the same functional form as in ΛCDM
[24].

The BOSS collaboration results [20] when the data are
modified through the reconstruction algorithm are:

DBOSS;post−recon
V (z̄LOWZ = 0.32) = (1265± 21)Mpc

DBOSS;post−recon
V (z̄CMASS = 0.57) = (2031± 20)Mpc .

Thus the BOSS distance measurements performed with
the reconstructed data agree with the LP results at 1σ
level, with slightly smaller error bars.

Our results clearly demonstrate that cosmic distances
can be inferred without relying heavily on a fiducial
cosmology, using model-dependent templates, or hav-
ing to manipulate the data so as to remove cosmology-
dependent non-linear effects. Moreover, when the same
pre-reconstruction data are fit, the LP remarkably pro-
vides smaller statistical errors than those reported by the
BOSS collaboration.

In a parallel study, employing the mock catalogues
developed by the BOSS collaboration to reproduce the
DR12 clustering properties, we validate the model-
independent procedure exploited here to estimate the LP
position from the observed correlation function [16].

We are currently working on using the LP as a stan-
dard ruler for future galaxy surveys such as Euclid,
DESI and WFIRST. These datasets will provide percent-
precision measurements of the galaxy correlation func-
tion at BAO scales, increasing the relative impact of the

8 These values are obtained assuming (rd/r
fid
d ) = 1.00136 with

rd given by the Planck-TT,TE,EE+lowP best-fit values of cos-
mological parameters and rfid

d = 147.1 Mpc in the [20] fiducial
cosmology.

potential bias due to non-linear effects. We have shown
here that the LP provides a simple clean standard ruler
that avoids many of the limitations of standard BAO
methods. This may also be of interest for BAO mea-
surements in 21-cm intensity maps that suffer from poor
angular resolution, which broadens the correlation func-
tion on BAO scales but may leave the LP unaffected [25].

Several lines of investigation are currently in progress
to test the validity of the LP below 1%, explore statis-
tical and systematics errors, optimize the LP extraction,
and explore new applications to estimate the growth of
structure.
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