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We study the role of the quantum geometric tensor (QGT) in the evolution of two-band quantum
systems. We show that all its components play an important role on the extra phase acquired by a
spinor and on the trajectory of an accelerated wavepacket in any realistic finite-duration experiment.
While the adiabatic phase is determined by the Berry curvature (the imaginary part of the tensor),
the non-adiabaticity is determined by the quantum metric (the real part of the tensor). We derive,
for geodesic trajectories, (corresponding to acceleration from zero initial velocity), the semiclassical
equations of motion with non-adiabatic corrections. The particular case of a planar microcavity
in the strong coupling regime allows to extract the QGT components by direct light polarization
measurements and to check their effects on the quantum evolution.

PACS numbers:

In 1984, Berry [1] has shown that the quantum evolu-
tion in a parameter space leads to the accumulation of
an extra phase in the wave function, the famous Berry
phase (already known in optics as the Pancharatnam
phase [2]). Over the last decades, this concept and its
generalization – Berry curvature – were understood to
be among the most general in physics. For instance,
the topological insulators [3] are classified by the Chern
number[4] – an integer topological invariant obtained by
integrating the Berry curvature over a complete energy
band. Berry curvature also strongly affects the trajec-
tory of an accelerated wave packet (WP), creating a lat-
eral drift: an anomalous velocity, transverse to the ac-
celeration. This anomalous velocity is at the origin of
many crucial phenomena in physics such as the anoma-
lous Hall effect (AHE) [5–7] including transverse conduc-
tivity in Weyl metals [8–10], the intrinsic Spin Hall effect
for electrons[11] and light [12, 13], or the Valley Hall ef-
fect [14–16] in Transition Metal Dichalcogenides (TMDs),
the latter being a pillar of the emerging field called ”val-
leytronics” [17].

However, Berry curvature is a part of a more gen-
eral object: the quantum geometric tensor (QGT). The
gauge-invariant QGT was introduced in 1980 by Provost
and Vallee [18] as a part of a geometric approach to quan-
tum mechanics [19]. Its imaginary part corresponds to
the Berry curvature [1, 20], whereas its real part defines
a Riemannian metric, which allows to measure the dis-
tance between quantum states, involved in the definition
of fidelity, main figure of merit in quantum computing
[21, 22] (inculding photonics [23]). Quantum metric also
appears in the recent studies of phase transitions [24–26].
In condensed matter, the real part of the QGT has been
linked to the superfluid fraction of flat bands [27, 28], to
current noise in an insulator [26], to Lamb shift analog
for exciton states in TMDs [29], and to orbital magnetic
susceptibility in Bloch bands [30, 31].

The two parts of the QGT play complementary roles
when the Hamiltonian of the system changes over time.
The imaginary part (Berry curvature) defines the addi-
tional Berry phase in the adiabatic limit, while the real
part (quantum distance) determines the non-adiabaticity
(NA), which, in turn, brings a correction to the Berry’s
formalism. NA in quantum systems has been studied ex-
tensively since the pioneering works of Landau [32, 33],
Zener [34], Dykhne [35], and many others [36–39], con-
cerning the regime where the NA is exponentially small,
whereas configurations with power-law NA were gener-
ally considered as somewhat less interesting [35, 40]. The
Landau quasi-classical formalism allows to calculate the
final non-adiabatic fraction (transition probability) when
the perturbation smoothly vanishes at infinities. How-
ever, this approach cannot be applied to a simple yet
important situation of a magnetic field rotating with a
constant angular velocity, because the perturbation does
not vanish. Berry himself trusted that the NA is expo-
nentially small [1], but that is not the case in the configu-
ration he considered [41, 42], as we shall see below. More-
over, the NA changes during the evolution, and its final
value is different from the maximal one. The Landau-
Zener formalism allows to find only the former, while the
latter is not exponentially small even if the evolution is
perfectly smooth. In all these cases, the real part of the
QGT allows to quantify the NA and brings an important
correction to the Berry phase.

In this work, we calculate the non-adiabatic correc-
tions (NAC) for the phases and trajectories of WPs
for a finite-time quantum evolution beyond the Landau-
Zener approximation, considering the important family
of geodesic trajectories, corresponding to acceleration
from zero initial velocity. We show that these NACs are
quantitatively described by the real part of the QGT,
whereas the adiabatic limit is described by the imaginary
part (Berry phase). We propose a specific example of ap-
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plication: a planar microcavity [43] in the strong coupling
regime. We show that it allows, through simple light po-
larization measurements, a direct access to the compo-
nents of the QGT, providing an answer to an important
problem of the recent years – the direct measurement of
Berry curvature and geometric quantities [44–52]. We
consider a practical experimental situation showing how
the real and imaginary part of the QGT control the AHE.

Rotation of a spin. The Bloch sphere represents the
simplest 2-level system with Berry curvature: a spin, in-
teracting with an applied magnetic field. Any 2-level
Hamiltonian can be written as a superposition of Pauli
matrices, and thus considered as an effective field acting
on a pseudospin.

A spin, which follows a slowly rotating magnetic field,
is never perfectly aligned with it, and thus it exhibits
fast precession (frequency Ω) about the magnetic field
together with the slow rotation (ω) of both of them in
the azimuthal plane (Fig. 1(a)). This behavior is sim-
ilar to the rotation of a small wheel attached to a long
shaft (Fig. 1(b)): the wheel, rotating around its axis
with the angular frequency Ω, at the same time rotates
with the frequency ω around the shaft fixation point. For
both the spin and the wheel, there is an important ro-
tational energy associated with the large frequency Ω,
but another part of the energy is associated with the
circular motion ω. Nobody could think of neglecting
the kinetic energy of the wheel’s motion mv2/2. How-
ever, the energy of the spin’s slow rotation encoded in
the Berry phase has been less evident to see. It can be
obtained by applying the energy operator Ê = i~∂/∂t to
the rotating spinor ψ(t) = 1/

√
2(e−iωt, 1)T eiΩt/2 (valid

in the limit ω → 0), which gives 〈Ê〉 = −~Ω/2 + ~ω/2.
The first term in this expression is the usual energy of
the spin in the magnetic field (”dynamical phase”), and
the second is the energy associated with the Berry phase
which appears because of the time dependence of the
spinor. For the time T = 2π/ω of one full rotation
of the field it gives γB = ~ωT/~ = π. One can then
take a derivative over the parameters of the wavefunc-
tion (WF), to get rid of the explicit time dependence
i 〈ψ | ∂ψ/∂t〉 = i 〈ψ | ∂ψ/∂ϕ〉 ∂ϕ/dt.

Because of the finite experiment duration, the spin
does not perfectly follow the field and gets out of the
azimuthal plane, tracing a cycloidal trajectory. The cor-
responding WF reads

ψ (t) =

(
cos θ(t)2 e−iωt

sin θ(t)
2

)
ei

Ω cos ξ(t)
2 t (1)

where θ is the polar angle and ξ is the angle between
the field and the spin. Averaging this expression over
precession time allows obtaining the correction to the
energy. The average value of θ for the cycloidal trajec-
tory of Fig. 1(a) corresponds to the equilibrium (zero
precession [42, 53, 54]) polar angle θ = π/2 − ω/Ω, giv-
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Figure 1: (Color online)(a) Bloch sphere with the spin (red
arrow) and the magnetic field Ω (blue arrow), adiabatic tra-
jectory (blue) and real trajectory (red dashed line); (b) Me-
chanical analog: ”adiabatic” trajectory of an infinitely small
wheel (blue), cycloid trajectory of a point on a wheel (red).
Ω - wheel rotation frequency, v - wheel velocity, ω - shaft
center rotation; (c) Total extra phase for one full spinor ro-
tation as a function of the rotation time; (d) Deviation from
the adiabatic Berry phase: numerical calculation (black) and
analytical correction exhibiting 1/T decay (red dashed).

ing [53] E = −~Ω/2 + ~ω/2(1 + 2ω/Ω), and a final extra
phase γ = π(1+2ω/Ω) or ∆γ/γB = 4π/(ΩT ) for one full
rotation time T .

The total extra phase after one full rotation of the mag-
netic field from the numerical solution of the Schrödinger
equation is plotted in Fig. 1(c) as a function of the rota-
tion duration T measured in units of precession periods
2π/Ω (equivalent to the frequency ratio Ω/ω). Larger
T means slower rotation and the adiabatic limit corre-
sponds to T → ∞ or ω/Ω → 0. We see that the extra
phase indeed converges to the value π, but the correction
is not negligible: ∆γ/γB > 30% for ω > Ω/10. The dif-
ference between the exact extra phase and the adiabatical
value of π is shown in a Log-Log plot on Fig. 1(d), again
as a function of T (black curve). We see that instead of
being exponentially small, this correction decreases only
as 1/T . The analytical NAC, ∆γ/γB = 4π/(ΩT ) (red
curve), fits the exact result very well [53].
Quantum Geometric Tensor. The QGT allows to gen-

eralize the above development to an arbitrary parameter
space and to unite both contributions to the extra phase
acquired by the WF in a single mathematical entity. In
general, a metric tensor gij determines how the distance
ds between two infinitesimally separated points depends
on the difference of their coordinates λi:

ds2 = gijdλidλj (2)

In the space of quantum-mechanical eigenstates, the dis-
tance is measured by the Fubini-Study metric, deter-
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mined by the WF overlap ds2 = 1−| 〈ψ(λ)|ψ(λ+ δλ)〉 |2.
Minimal distance ds = 0 corresponds to a maximal over-
lap of 1, while maximal distance ds = 1 corresponds to
orthogonal states. At each point of the Hilbert space, the
metric is thus determined by the WF ψ(λ), and the cor-
responding metric tensor is defined[18] as the real part
of the QGT:

Tij =

〈
∂

∂λi
ψ

∣∣∣∣ ∂

∂λj
ψ

〉
−
〈

∂

∂λi
ψ

∣∣∣∣ ψ〉〈ψ ∣∣∣∣ ∂

∂λj
ψ

〉
(3)

where ψ is the WF, λi and λj are the coordinates in
the parameter space (see [53] for details). Later, it was
understood that the imaginary part of QGT is the Berry
curvature [20]:

|B| = 2=[Tij ] = =[∇λ × 〈ψ(λ)|∇λψ(λ)〉] (4)

which determines the Berry phase for a closed path in
the parameter space.

Both components of the QGT contribute to the phase
of the WF in any finite-duration experiment: Berry cur-
vature determines the adiabatic value, while the quan-
tum metric allows to determine a NAC. The average NA
fraction (fraction of the excited state in the WF) for
a spin on the Bloch sphere can be found as fNA,eq =
ω2/4Ω2 [53], which is generalized using ω (λ) = 2ds/dt =
2
√
gλλ (λ)dλ/dt and Ω = Ω(λ):

fNA,eq (λ) =
gλλ
Ω2

(
dλ

dt

)2

(5)

QGT and WP trajectory. Berry curvature has been
shown to affect the trajectory of accelerated WPs, creat-
ing an anomalous velocity contribution in the AHE [5, 6].
The semiclassical equations of motion for the center of
mass of a quantum WP in presence of Berry curvature
can be derived using the Lagrangian formalism [6, 55–
58]):

~
∂k

∂t
= F, ~

∂r

∂t
=
∂ε

∂k
− ~

∂k

∂t
×B (6)

where ε is the energy dispersion, B(k) is the Berry cur-
vature and F is an external conservative force, acceler-
ating the WP. For charged particles, F = qE. Mag-
netic forces, known to affect the magnetic susceptibility
[30, 31, 59], are not the subject of the present work. Dif-
ferent types of corrections to these equations have been
considered in the past [60–62]. NACs account for the
fact that the WF is a superposition of two eigenstates
ψ = f0ψ0 + f1ψ1 (where |f1|2 = fNA found above).
Their respective energies contribute both to the first
term: ε̃ (k) = |f0|2ε0 (k) + |f1|2ε1 (k), ultimately provid-
ing a second-order correction to the group velocity. Other
NACs concern the second term, and, in a general case,
the first-order corrections should dominate.

Along geodesic lines (the most important case corre-
sponding to acceleration from v = 0 under a constant

force F, as in the Hall effect), all first-order and second-
order corrections cancel, except one. This single correc-
tion appears because the metric along the true trajectory
of ψ is not the same as the one along equator of the Bloch
sphere (followed by the eigenstates ψ0 and ψ1). Indeed:〈

ψ

∣∣∣∣ ddtψ
〉

=

〈
ψ

∣∣∣∣ d

dss
ψ

〉
dss
dt

=

〈
ψ

∣∣∣∣ d

dϕ
ψ

〉
dϕ

dss

dss
dt

(7)
where dϕ/dss = 1/

√
gϕϕ = 1/r sin θ. Now, we can write

ψ and the Berry connection on the basis of the eigenstates
(which are on the equator, where dss = dϕ):

1

sin θ

〈
fiψi

∣∣∣∣ d

dϕ
fiψi

〉
dss
dt

=
1

sin θ

〈
fiψi

∣∣∣∣ ddtfiψi
〉

(8)

The Berry connection above involves intra- and inter-
band terms [61]. For the Berry curvature appearing in
the AHE, the intraband terms add up to 1, while the
inter-band terms cancel out, giving simply B = B0/ sin θ,
where B0 is the Berry curvature of the instantaneous
eigenstate ψ0. The Lagrangian formalism provides [53]
the corrected equation for the trajectory:

~
∂r

∂t
=
∂ε̃

∂k
− ~

∂k

∂t
× 2= [Tkφ]

(
1 + 2

Tkk
Ω2

(
∂k

∂t

)2
)

(9)

This equation is the main result of our manuscript. It
shows that the anomalous velocity is a sum of the adi-
abatic value (as in Eq. (6)) and a NAC (the second
term in the parenthesis). We stress that this equation
is only valid when the field follows a geodesic trajectory
in the parameter space. In such case, while the renor-
malized energy ε̃ brings second-order corrections to the
acceleration in the direction of the force, the anomalous
velocity only includes the correction from the variation
of the metric due to the NA, because the other first and
second-order corrections to this term cancel out. Since
the transverse conductivity arising from the anomalous
velocity is known to be determined by the integral of the
Berry curvature (e.g. in Weyl metals [8–10]), its NAC
could be linked with the integral of the quantum met-
ric (the Euler characteristic). The NAC is similar to
the relativistic correction in the Kepler problem: like the
curvature of the radial Schwarzschild metric perturbs its
interplay with the azimuthal part, leading to the peri-
helion precession, Berry curvature also inevitably brings
quantum metric curvature, affecting the trajectory.
QGT in a planar cavity. Exploring the whole Bloch

sphere requires all 3 components of the effective mag-
netic field. If one deals with light, it means controlling
the splittings between linear and circular polarizations.
This is why we have chosen a model system consist-
ing of a microcavity in the strong coupling regime [43],
where the polariton modes appear from exciton and pho-
ton resonances. The photonic fraction provides a βk2

in-plane spin-orbit coupling (SOC) due to the TE-TM
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Figure 2: (a) LPB split by Zeeman field and TE-TM SOC;
(b) Pseudospin texture of the lower eigenstate: in-plane pseu-
dospin projection (arrows) and SZ (color).

splitting [63, 64], while the exciton mode provides the
Zeeman splitting ∆ [65, 66] (under applied magnetic field
or thanks to spin-anisotropic interactions [67]). Here, the
pseudospin can be easily measured via the polarization
of light [53].

We begin with the parabolic spinor Hamiltonian of the
lower polariton branch (LPB) of a planar cavity:

H0 =

(
~2k2

2m∗ + ∆ βk2e2iφ

βk2e−2iφ ~2k2

2m∗ −∆

)
(10)

with the following eigenvalues (Fig. 2(a)):

ε±(k) =
~2k2

2m∗ ±
√

(∆2 + β2k4) (11)

with ∆ = 60 µeV, β = 0.14 meV/µm−2. While the sys-
tem shows no gap because of the positive mass of both
branches, and therefore is not a topological insulator,
it nevertheless exhibits a non-zero Berry curvature, re-
flected by the pseudospin texture (Fig. 2(b)), similar to
bilayer graphene under bias voltage [68–70]. We compute
analytically the QGT for the lower eigenstate in polar co-
ordinates (k,φ):

gkk =
∆2k2β2

(∆2 + β2k4)2
, gφφ =

k2β2

∆2 + β2k4
(12)

gkφ = gφk = 0, B =
2∆k2β2

(∆2 + k4β2)3/2
eZ

These are plotted as solid curves in Fig. 3. Because of
the k2 dependence of the TE-TM SOC, the form of the
Berry curvature is different from the one of Rashba SOC
[7, 57] (with maximum at k = 0) and similar to the one
of bilayer graphene [71].

A very interesting opportunity to measure the QGT
directly is offered by the radiative states of photonic sys-
tems which allow to access all pseudospin components S
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Figure 3: (Color online) QGT components: BZ (black); gkk
(red) and gφφ (green) calculated analytically (solid lines) and
extracted from numerical experiment (dashed lines).

via polarization:

gkk =
1

4

(
∂
∂kSz(k)

)2
1− Sz(k)

2 (13)

gφφ =
1

4k2

 ∂
∂φ

(
Sy
Sx

)
1 +

(
Sy
Sx

)2


2 (

1− S2
z

)
(14)

|B| =
1

2k

 ∂
∂φ

(
Sy
Sx

)
1 +

(
Sy
Sx

)2


2

∂Sz
∂k

(15)

To demonstrate that the QGT components including the
Berry curvature can indeed be extracted from a realistic
experiment, we perform a numerical simulation using a
2D spinor Schrödinger equation for LPB in the parabolic
approximation:

i~∂ψ±
∂t = − ~2

2m∆ψ± − i~
2τ ψ± + ∆ψ± (16)

+β
(
∂
∂x ∓ i

∂
∂y

)2

ψ∓ + P̂

where ψ+(r, t), ψ−(r, t) are the two circular components,
m = 5 × 10−5mel is the polariton mass, τ = 30 ps the
lifetime, P̂ is the pump operator which in this case repre-
sents uncorrelated noise describing the spontaneous scat-
tering under non-resonant pumping of the exciton reser-
voir. The results of the extraction are presented in Fig. 3
as dashed curves, whose perfect agreement with the solid
lines obtained from Eq. (12) confirms the validity of this
method.

Figure 4(a) shows the trajectories of polariton WP ac-
celerated in a microcavity by a realistic wedge U(x) =
−Fx, where F = 1 meV/128 µm for 3 values of β. The
red-dashed curves calculated using equation (9) (account-
ing for both <[T ] and =[T ]) are in excellent agreement
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Figure 4: (Color online) (a) WP trajectories in real space:
numerical (black) and analytical (red dashed, uncorrected -
blue dash-dotted) for 3 values of TE-TM SOC β (∆ = 0.06
meV); (b) Final lateral shift as a function of β: adiabatic (blue
dash-dotted line), corrected (red solid line), and numerical
(black dots). Here, ∆ = 0.03 meV.

with direct numerical solution of the Schrödinger equa-
tion (16) (black curves). The NA fraction can be ex-
tracted experimentally from polarization[53] : fNA =
S2
Y . The blue dotted curve shows the trajectory with-

out the correction (based only on =[T ]). The difference
becomes more important for higher gradients. Fig. 4(b)
shows the final lateral shift ∆Y as a function of β: adi-
abatic (∆Y =

√
βΓ2(3/4)/

√
∆π - blue dotted [53]) and

corrected (red) curves, as well as results of simulations
(black dots). Numerical results are much better fitted by
the theory including the NAC. Both the relative lateral
shift and the NAC are comparable to the values reported
for metamaterials [72]. Such effects could be important
for applications in integrated polaritonics.

To conclude, we derive a new correction to the semi-
classical equations of motion of an accelerated WP on
geodesic trajectories in two-band systems appearing in
any realistic finite-duration experiment. While the adi-
abatic limit is determined by the Berry curvature, the
NAC is determined by the quantum metric. This cor-
rection brings a non-linear contribution to the transverse
conductivity. The particular case of a planar microcav-
ity in strong coupling regime allows to extract the QGT
components by direct measurements and to check their
effects on the quantum evolution.
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