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We study a 2D exchange model with a weak static random field on lattices containing over one
hundred million spins. Ferromagnetic correlations persist on the Imry-Ma scale inversely propor-
tional to the random-field strength and decay exponentially at greater distances. We find that the
average energy of the correlated area is close to the ground-state energy of a skyrmion, while the
topological charge of the area is close to 1. Correlation function of the topological charge density
changes sign at a distance determined by the ferromagnetic correlation length, while its Fourier
transform exhibits a maximum. These findings suggest that static randomness transforms a 2D
ferromagnetic state into a skyrmion-antiskyrmion glass.
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Studies of static randomness in field-theory models
have a long history. They apply to amorphous magnets
and spin glasses [1-4], flux lattices in superconductors
[5-9], magnetic bubble and skyrmion lattices [10-12],
charge density waves [15-19], liquid crystals and poly-
mer physics [13, 14|, and He-3 in aerogel [20, 21]. It
has been long understood that the effect of a static ran-
dom field (RF) on the long-range order is stronger than
the effect of thermal fluctuations. In 1975 Imry and Ma
(IM) made a general observation [22] that static ran-
domness, no matter how week, destroys the long-range
order in less than d = 4 dimensions in systems with
continuous-symmetry order parameter. According to the
IM argument the correlated area scales as H 12%/ @9 with
the strength Hp of the RF. Such correlated regions re-
ceived the name of IM domains. While this concept
was widely used by the experimentalists in application
to various physical systems it was later questioned by
theorists [23-32] who applied the renormalization group,
variational and replica-symmetry breaking methods to
the problem. They argued that static randomness must
lead to a defect-free Bragg glass characterized by only a
power-law decay of correlations. More recent large-scale
numerical simulations of RF systems, accompanied by
analytical work [33], have shown that exponential decay
of correlations does occur in the absence of topological
defects. In, e.g., spin systems with n spin components
this requires n > d + 1. All problems of practical inter-
est, however, correspond to n < d + 1, when topological
defects are present. For such problems the dispute about
the nature of the glass state created by static randomness
has never been settled.

In this Letter we study the borderline case, n = d+ 1,
of a three-component spin field in two dimensions. It
possesses nonsingular topological objects, skyrmions [34],
as compared to singular objects for n < d + 1 (e.g.,
vortices in 2D and 3D XY models). The absence of
the Bragg glass in two dimensions was first noticed by
Daniel Fisher et al. [35] who argued that a pinned elas-

tic medium would be unstable to dislocations. A similar
argument exists for a 2D ferromagnet. The scale invari-
ance of the pure continuous exchange model in two di-
mensions makes the ground-state energy of the skyrmion,
47 J (with J being the exchange constant), independent
of the skyrmion size A. In a crystal lattice, violation
of the scale invariance by the finite atomic spacing, a,
adds the term proportional to —J(a/\)? to the energy
of the skyrmion, forcing it to collapse [36]. This changes
in the presence of the RF. Fluctuations of the RF make
the energy of its interaction with the skyrmion scale as
—Hpg(M\/a) [37], thus forcing sufficiently large skyrmions
to blow up rather than collapse. As we shall see, how-
ever, in the absence of the external field, the ferromag-
netic order that is needed for the skyrmions to exist, in
accordance with the IM argument is limited to areas of
size Ry o< 1/HR. It is therefore plausible that IM do-
mains in a 2D RF system are made by skyrmions and
antiskyrmions of average size A ~ R;. In what follows
we will provide quantitative support to this picture by
studying topological structure of the disordered state on
lattices containing over 10® spins.
The model is described by the Hamiltonian
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The first formula corresponds to the discrete lattice ver-
sion of the model, with o; being the spin at the i-th lat-
tice site, and < 77 > meaning summation over the nearest
neighbors. The second formula provides the continuous
field-theory counterpart of the model with a being the
exchange stiffness, index b = 1,2, 3 indicating the com-
ponents of the spin field S(x, y) of constant length Sy, and
index 8 = z,y indicating the components of the radius-

vector in the xy plane. The RF is oriented randomly
at each lattice site. Our conclusions do not depend on
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whether it has a constant magnitude Hg at each site or is
distributed with the Hg average. The discrete and con-
tinuous models are related according to Y., = [ d?r/a?,
o; = a®S(r;), a = Ja*.

Mapping of the unit sphere represented by s(z,y) =
S(z,y)/So onto the axy coordinate plane generates
classes of homotopy [38] that describe skyrmions and
antiskyrmions of quantized topological charge @ =
0,+1,42, ..., given by
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in o under the integral

has the meaning of the topological charge density (TCD).
We are interested in the spin-spin correlation function
(CF), (s(r1)-s(r2)), and the CF of the TCD, (gq(r1)q(r2))
defined in a standard way as the average over pairs of
points separated by the same distance R = |r; —rs|. The
spin-spin CF has been intensively studied for RF systems
in the past while the TCD CF received little attention.
As we shall see it sheds a new light on the structure of
the disordered state.

In the numerical work we use periodic boundary condi-
tions and a collinear initial condition (CIC) for the spins.
The latter corresponds to all spins initially aligned in
one direction, which would be the ground state in the
absence of the RF. The system prepared with the CIC
is allowed to evolve to a minimum energy state in the
presence of the RF which direction is chosen randomly
at each lattice site. Our numerical method searches for
the energy minimum by combining sequential rotations
of the spins towards the direction of the local effective
field, H; ¢t = —dH /d0;, with the energy-conserving spin
flips, o; — 2(o7; - Hi7eff)Hi7eﬂ‘/Hzeﬂ- — o;. The two are
applied with probabilities v and 1 —  respectively; ~
playing the role of the relaxation constant. The method
has high efficiency for glassy systems under the condition
v < 1[33]. The largest-scale computation has been done
on a square lattice containing 10240 x 10240 spins. In
numerical work we used J = 1 and |o;| = 1, with all
results easily rescaled for arbitrary J and |o|.

Numerically obtained real-space spin-spin and TCD
CFs vs R = |r; — ro| are shown in the upper panel of
Fig. 1 for two values of Hgz. The TCD CF drops much
faster than the spin-spin CF. A more careful analysis (see
below) shows that it changes sign at R ~ Ry and then
oscillates on increasing R. Values of the ferromagnetic
correlation length, Ry, that appear in the upper panel of
Fig. 1, are taken from the theoretical formula derived be-
low. They provide a good fit of the short-range behavior
of the CF shown in the lower panel of Fig. 1.

While the system is highly nonlinear it is instructive
to compare the numerical results with the analytical re-
sults for the spin-spin CF that can be obtained if one
ignores topological defects. One such possibility is pre-
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Figure 1: Color online: Upper panel: Spin-spin (blue) and
TCD (red) CFs for two values of the random field, computed
with the CIC on a square lattice 10240 x 10240. Lower panel:
Short-range behavior of the spin-spin CF.

sented by the 2D mean-spherical model in which the spin
field S(r) is allowed to have an arbitrary length while
satisfying an integral condition (S?) = S2. It is statis-
tically equivalent to the spin field with an infinite num-
ber of spin components [39], in which case (n > d + 1)
the topological objects are absent [33]. Adding the term
fAfdzr S? with the Lagrange multiplier A = —aky/2
to the Hamiltonian one obtains the following equation
for the spin field: (V2 — k]%)S = —Hpg/a. Its solution
is S(r) = —a™! [ d*'G(r —r')Hg(r'), where G(r) is the
Green function of the differential equation for S, having a
Fourier transform G (k) = —1/(k? + k?) Writing for the
RF (Hg;(r')Hg;(x")) = $H%a?6;;6(|r' — r”]), one gets
for s =S/

((00) - s(r2)) = (b R (kg R). iy = 32 (4



where k; was obtained from the condition (s?) = 1. Here
K;(z) is a modified Bessel function having asymptotes
Ki(z) = 1/z at x — 0 and K;(z) — (7/2x)"/? exp(—x)
at x > 1. We define the ferromagnetic correlation length
as Ry = 1/ky. A more accurate expansion at short dis-
tances, R < Ry, is

(s(r1) -s(r2)) = 1= [R/(2R;)* In(2R;/R).  (5)

In that limit, however, one can develop a more rigorous
approach that agrees with numerics quantitatively. The
exact equation for s(r) is

aV?s —as(s-V?) +Hr —s(s-Hg)=0. (6)

At short distances, starting with s = s at a certain point
and writing s = sg + s in the vicinity of that point,
it is easy to see that due to the nonsingular nature of
skyrmions a weak rotation of s always provides a Js small-
ness of s- V?s = —(Vds)? as compared to Vs = V2§s.
This allows one to neglect the second term in Eq. (6),
reducing it to aV2s = —H +s(s-Hp) that can be writen
in the integral form s(r) = —a~! [d?r'G(r — 1')g(r’),
with the Fourier transform of G(r) being —1/k% and
g = Hi — s(s- Hg). At this point the CF at short
distances can be computed for any n-component spin.
Noticing that (g(r') - g(r”)) = H&(1 — 1/n)a?s(x' — r""),
one obtains Eq. (5) but with a different Ry,

1/2
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As expected, at n = oo it yields Ry of the 2D mean-
spherical model while at n = 3 a slightly different result
follows: Ry = (6m)'/2(Js/Hg). It gives Ry/a ~ 43.4 for
Hpr = 0.1 and Ry =~ 145 for Hr = 0.003, which agrees
remarkably with the numerical fit at short distances. At
large distances the spin-spin CF exhibits some kind of
exponential decay with R; « 1/Hp, although its exact
analytical form remains unknown. For, e.g., Hp = 0.1
the CF decreases in half at R/a = 52.

We now focus our attention on the TCD CF. Its be-
havior is shown in the upper panel of Fig. 2. For,
e.g., Hp = 0.1 it crosses zero at R/a ~ 46 which is
pretty close to Ry obtained for the spin-spin CF. Since
the latter provides the average size of the region where
the spins are ferromagnetically correlated, it shows some
kind of the oscillating topological order associated with
the IM domains: Domains with a positive topological
charge are surrounded by domains with a negative topo-
logical charge. The latter is illustrated by the plot of
the TCD shown in the lower panel of Fig. 2. These re-
sults hint that the correlated regions could be formed by
coupled skyrmions and antiskyrmions deformed by their
interaction and by the RF energy landscape.

Further evidence of the topological order associated
with the IM domains comes from the Fourier transform
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Figure 2: Color online: Upper panel: TCD CF averaged
over realizations of the RF. Lower panel: TCD color plot.
Red/blue shows positive/negative sign of the TCD while the
density of the color shows the magnitude of the TCD. Solid
lines are guidance for the eye to see the grainy structure of
the topological charge associated with IM domains.

of the TCD CF shown in Fig. 3. It exhibits a maximum
at kRy = 1, thus confirming the oscillating structure
of the TCD. To relate the observed oscillations of the
TCD to skyrmions one can estimate the absolute value
of the topological charge of the correlated area as Qca =
(2Rs/L)? [ d*r|q| where L x L is the total area of the
2D system. At Hr = 0.1 this gives Qca = 0.948 for
Rs/a = 43.4 (the short-range result for the spin-spin
CF) and Qca = 1.065 for Ry/a = 46 (the first zero of
the TCD CF). Both values of Qca are pretty close to
the skyrmion charge () = 1. The exchange energy of the
correlated area coincides with the ground state energy of
the skyrmion, 47J, up to a factor of order unity.

In this Letter we have studied topologic properties of
the glassy state in a generic RF 2D exchange model. It
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Figure 3: Color online: Fourier transform of the TCD CF (raw
and smoothed) for Hr = 0.1 (upper panel) and Hr = 0.03
(lower panel).

can be easily generalized to take into account many other
effects that exist in real magnetic films. This includes,
e.g., the effects of the crystal field [40] and random mag-
netic anisotropy [37] on skyrmions. Strong anisotropy
leads to a more significant metastability [41] than the RF
of a comparable magnitude. The latter can be generated
by, e.g., exchange interaction with magnetic impurities
[19]. In a 2D Heisenberg model (n = d+ 1), it provides a
very narrow hysteresis loop [33], that is, weak metastabil-
ity. This makes our results weakly dependent on the ini-
tial conditions. Other interactions usually studied in the
context of 2D spins include Dzyaloshinskii-Moriya (DMI)
[42—44] and spin-lattice interactions, as well as coupling
to non-magnetic defects. Since these interactions contain
spatial derivatives of the spin and phonon displacement
fields they generally could not compete with the disorder-
ing effect of the RF at large distances (small k), although
the corresponding correlation functions would depend on

more parameters. DMI for example can inject chirality
into the problem alongside with the TCD.

In conclusion, we have provided evidence that a static
random field in the generic 2D exchange model trans-
forms the ordered state into a skyrmon-antiskyrmion
glass. Experimental detection of the topological order
requires accurate mapping of the directions of spins in
large areas. It could be worth the effort because it would
help to solve the fundamental problem of the nature of
the glass state in systems with nontrivial topology. Re-
cent experiments on skyrmions in disordered films with
ferromagnetic exchange [45, 46] make the first step in
that direction.

This work has been supported by the grant No. DE-
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ergy, Office of Science.
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