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We present numerical evidence that most two-dimensional surface states of a bulk topological
superconductor (TSC) sit at an integer quantum Hall plateau transition. We study TSC surface
states in class CI with quenched disorder. Low-energy (finite-energy) surface states were expected to
be critically delocalized (Anderson localized). We confirm the low-energy picture, but find instead
that finite-energy states are also delocalized, with universal statistics that are independent of the
TSC winding number, and consistent with the spin quantum Hall plateau transition (percolation).

When fluid floods a landscape, the percolation thresh-
old is the stage at which travel by land or by sea becomes
equally difficult. In the quantum Hall effect (QHE), the
sea level corresponds to the Fermi energy and the land-
scape is the electrostatic impurity potential [1]. The
critical wave function that sits exactly at the plateau
transition corresponds to the percolation threshold, while
closed contours that encircle isolated lakes or islands cor-
respond to Anderson localized states within a plateau.
Although the critical statistics of the usual plateau tran-
sition differ [2, 3], the plateau transition in the spin quan-
tum Hall effect (SQHE) [4–11] can be mapped exactly to
classical percolation [5]. The SQHE was introduced in
the context of spin singlet, two-dimensional (2D) super-
conductivity. Gapless quasiparticles can conduct a spin
current, and under the right conditions (broken time-
reversal symmetry but negligible Zeeman coupling, as in
a d+id superconductor [6]), the spin Hall conductance
within the spin Hall plateau is precisely quantized. The
SQHE belongs to the Altland-Zirnbauer class C [3].

For both classical percolation and the plateau transi-
tion in the SQHE, the “sea level” has to be fine-tuned to
the percolation threshold; in the SQHE, this means that
almost all states are Anderson localized, except those at
the transition. In this Letter, we uncover a new real-
ization of 2D critical percolation that requires no fine-
tuning. In particular, we provide numerical evidence for
an energy band of states, where each state exhibits statis-
tics consistent with critical percolation. We show that
this band of states appears at the surface of a three-
dimensional (3D) topological superconductor (TSC) in
class CI, subject to quenched surface disorder that pre-
serves spin SU(2) symmetry and time-reversal invariance.

Our results suggest an unexpected, direct link between
3D time-reversal invariant TSCs and 2D QHEs. We use a
generalized surface model that works for any bulk wind-
ing number, but we find the same “percolative” states at
finite energy in all cases. Together with previous results
for class AIII [12–14], it is natural to conjecture that the

three classes of 3D TSCs (CI, AIII, DIII [15, 16]) pos-
sess surface states that at finite energy and any winding
number are equivalent to the corresponding plateau tran-
sitions of the SQHE (class C), integer quantum Hall effect
(class A), and thermal quantum Hall effect (class D). The
critical surface state band found here will dominate finite-
temperature response (a “multifractal spin metal”).

Effective field theories for TSC surface states [15, 17–
20] were originally studied [12, 21–24] as examples of
exactly solvable, critical delocalization in 2D. Only re-
cently was it understood that these must be attached
to a higher-dimensional bulk, owing to certain anomalies
[15, 25, 26]. TSC surface states can appear as multiple
species of 2D Dirac or Majorana fermions [15]. In class
CI these are Dirac owing to the conservation of spin,
the z-component of which plays the role of a U(1) “elec-
tric” charge. Nonmagnetic intervalley impurity scatter-
ing takes the form of an SU(2) vector potential, due to
the anomalous version of time-reversal symmetry [17, 18].
The exact solvability (and proof of critical delocalization)
holds only at zero energy in these theories [21–24].

Topological protection [15] requires that at least one
surface or edge state must evade Anderson localization
in the presence of (nonmagnetic) quenched disorder [27–
29]. For a class CI TSC surface, the zero-energy wave
function is critically delocalized, with statistics that are
exactly solved by a certain conformal field theory (CFT)
[17, 30]. The standard symmetry-based argument [3, 27]
is that all finite-energy states of a class CI Hamiltonian
should reside in the “orthogonal” metal class (AI), known
to possess only Anderson-localized states in 2D [3].

A superficial argument can be given for why any
nonstandard class (such as CI) with a special chiral
or particle-hole symmetry becomes a standard Wigner-
Dyson class (here AI) at finite energy: Adding the en-

ergy perturbation to the Hamiltonian matrix ĥ→ ĥ−ε 1̂
breaks the special symmetry for any ε 6= 0. This logic is
flawed, however, because ε couples to the identity opera-
tor 1̂, which commutes with ĥ. The argument works for



2

a random symmetry-breaking perturbation ε → ε(r) (r
is the position vector), but that is a different problem.

A physical argument for the reduction to Wigner-
Dyson in a nonstandard class describing Bogoliubov-de
Gennes quasiparticles in superconductors [3, 15] is the
following. For single-particle energies much larger than
the BCS gap, the wave functions should resemble those
of the parent normal metal, while ε = 0 is the only
symmetry-distinguished energy. However, TSC surface
states can evade this argument as well, since the bulk
gap is the maximum allowed surface state energy; above
this, 2D surface states hybridize with the 3D bulk. All
TSC surface states are (Andreev) bound states.

We find energy stacks of delocalized class C, SQHE
plateau transition states for any bulk TSC winding num-
ber. The SQHE states are identified by their multifractal
spectrum [3, 9, 10]. The absence of Anderson localization
throughout the surface energy spectrum is qualitatively
similar to 1D edge states of quantum Hall, as well as edge
and surface states of 2D and 3D topological insulators.
Our work suggests that this may be a general principle
of fermionic topological matter.

Our results generalize a previous observation for a sim-
pler model in class AIII. This model consists of a single
2D Dirac fermion coupled to abelian vector potential dis-
order; it is critically delocalized and exactly solvable at
zero energy [12]. It can also be interpreted as the sur-
face state of TSC with winding number ν = 1 [15, 18].
It was later claimed [13] that all finite-energy states of
this model should reside at the plateau transition of the
(class A) integer quantum Hall effect, and this was veri-
fied numerically [14].

Model.—We employ a k-generalized two-species Dirac
model to capture the surface states of a class CI TSC
with even winding number ν = 2k,

ĥ =

[
0 (−i∂)k + Aa τ̂a + A0

(−i∂̄)k + Āa τ̂a + Ā0 0

]
, (1)

where ∂ ≡ ∂x − i∂y and A ≡ Ax − iAy, with ∂̄ and Ā
respective complex conjugates of these.

For k = 1, this is the surface theory for the lattice
model in [30]. Quenched disorder enters via the abelian
vector potential A0(r) or the nonabelian SU(2) vector
potential Aa(r) τ̂a, where r = {x, y} is the position vec-
tor, and τ̂1,2,3 denotes Pauli matrices acting on the space
of the two species. The case with k > 1 was inspired
by higher-dispersion surface bands obtained in spin-3/2
class DIII TSC models [19, 20, 31, 32]. The bulk winding
number can be inferred by turning on the time-reversal
symmetry-breaking mass term and calculating the sur-
face Chern number [19, 29]. For k > 1, Eq. (1) is not
gauge invariant, but this is of no consequence because
the vector potentials merely represent the most relevant
type of quenched disorder allowed by symmetry. Class
CI has P 2 = −1 particle-hole symmetry [15]. In order to

realize P , we take A0 = 0 for odd k, while we take A3 = 0
for even k [33]. Time-reversal invariance is equivalent to

the block off-diagonal form of ĥ [17, 18].

We analyze ĥ in Eq. (1) numerically via exact diag-
onalization. Calculations are performed in momentum
space q = {qx, qy} to avoid doubling the surface the-
ory [14]. The Fourier components of any nonzero vec-
tor potential A0,1,2,3

x,y (q) are parameterized via A(q) =(√
λ/L

)
exp

[
iθ(q)− q2ξ2/4

]
, where θ(q) = −θ(−q),

but these are otherwise independent, uniformly dis-
tributed random phases. Here L, ξ and λ denote the
system length, correlation length, and disorder strength
respectively; the latter is dimensionless for k = 1.
We choose periodic boundary conditions so that qi =
(2π/L)ni, with −N ≤ ni ≤ N , for i ∈ {x, y}. Here N de-
termines the size of the vector space, which is 4(2N+1)2.
The correlation length ξ = 0.25(L/N) for all calculations.

Except for states deep in the high-energy “Lifshitz
tails” (see Fig. 4), we find no evidence of localization in
the surface eigenstate spectrum, although we cannot rule
it out for much larger system sizes. Localization at high
energies would not be unexpected, because the model is
not terminated in a physical way (which would instead
involve hybridizing the 2D surface with the 3D bulk).

All of the states that we find in the bulk of the surface
energy spectrum look “critically delocalized,” i.e. |ψ|2(r)
is small over most of the surface, but is sporadically punc-
tuated by probability peaks of variable height. We an-
alyze these states via multifractal analysis [2, 3]. One
breaks the system up into boxes of size b, and defines
the box probability µn and inverse participation ratio
(IPR) Pq via µn =

∫
An

d2r |ψ(r)|2, Pq ≡
∑
n µ

q
n, where

An denotes the nth box. The multifractal spectrum τ(q)
governs the scaling of the IPR, Pq ∼ (b/L)τ(q).

For critically delocalized states, the form of τ(q) is ex-
pected to be self-averaging in the infinite system size
limit [43]. For class CI surface states at zero energy
(class C SQHE plateau transition states), the spectrum
is exactly (to a good approximation) parabolic, and is
given by τ(q) = (q − 1)(2 − θ q) for q < |qc|, and
τ(q) = [

√
2− sgn(q)

√
θ]2q for q > |qc|. Here qc ≡

√
2/θ.

The parameter θ determines the degree of critical rari-
fication: θ = 0 (θ > 0) for a plane wave (multifractal)
state. In the above, qc denotes the termination threshold
[43, 44]; the spectrum is linear for |q| > qc, and the slopes
govern the scaling of the peaks and valleys of |ψ|2(r).
Note that an accurate calculation of τ(q) for negative q
requires significant coarse-graining, since it entails tak-
ing negative powers of a function that is small almost
everywhere. For this reason negative-q results are always
worse than positive q (and are often not reported).

For class CI, the Sp(2n)k CFT predicts that θk =
1/2(k + 1) [17]. Analytical and numerical results on the
SQH plateau transition instead give θ ' 1/8 [9, 10].

Numerical Results.—In Fig. 1, we plot the anomalous
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FIG. 1. Anomalous part of the multifractal spectrum ∆(q) ≡ τ(q)− 2(q− 1) for low-energy (a,c) and finite-energy (b,d) states,
for the TSC surface state model in Eq. (1) with k = 1 (a,b) and k = 7 (c,d). The solid red curves obtain from momentum-space
exact diagonalization [14]. The blue dot-dashed curve (green dashed curve) is the k-dependent (independent) class CI (class
C SQH plateau transition) prediction. The solid red curve in each panel is obtained by averaging over states within a narrow
energy bin (see text); the shaded red region indicates the standard deviation within the bin. Panel (e) shows the same for
low-energy states when time-reversal symmetry is broken explicitly, while spin SU(2) (particle-hole) symmetry is preserved.
The disorder strength λ = 1.6π (16π) for k = 1 (7). Parameters for (e) are specified in [33]. The system is a (2N+1)×(2N+1)
momentum grid; N = 40 for (a)–(e). Panels (f,g) are the same as (b,d), but for a larger system size (N = 46).

part of the multifractal spectrum ∆(q) ≡ τ(q)− 2(q− 1)
for k = 1 (a,b) and k = 7 (c,d). The class CI and class C
(percolation) analytical predictions are respectively de-
picted as blue dot-dashed and green dashed lines. In
Figs. 1(a,c), we plot the numerical result for the low-
energy states of the spectrum, which show good agree-
ment with the k-dependent class CI prediction. Calcula-
tions are performed for a typical realization of the ran-
dom phase disorder, without disorder-averaging, over a
square grid of momenta. The solid red line in each panel
is obtained by averaging over a narrow energy bin of 36
consecutive low-energy states. For k = 7 these corre-
spond to the lowest positive energies in the spectrum,
while for k = 1 we neglect states very close to zero energy,
keeping those in the energy bin (0.01-0.0141) (see Fig. 2
for the numerical density of states versus energy). The
average plus or minus the standard deviation is indicated
by the light red shaded region in each panel. We plot the
deviation only for |q| < qc, where qc is the termination
threshold for the low-energy class CI prediction (a,c) or
finite-energy SQHE class C prediction (b,d). Since the
spectrum becomes linear outside of this range, the error
in ∆(q) also grows linearly for |q| > qc, but only the slope
discrepancy near q = ±qc is meaningful.

Figs. 1(b,d) show the results for finite-energy states.
For both k = 1 (b) and k = 7 (d), the solid red curve in
each panel agrees well with the class C prediction (dashed
green curve). The finite-energy bin for each k is selected
as the one with the highest percentage of states match-
ing the spin quantum Hall prediction, as indicated by a
certain fitness criterion described below. Figs. 1(f,g) are
the same as Figs. 1(b,d), but for a larger system size.

Fig. 1(e) shows the low-energy spectrum of the k =
1 model, but now with time-reversal symmetry broken

explicitly. This is obtained by turning on random mass
and nonabelian potential terms with vanishing average
value, but nonzero variance [4, 33]. This preserves spin
SU(2) symmetry. A nonzero average mass corresponds to
a “spin Hall Chern insulator”; tuning this to zero while
retaining a nonzero variance was expected to give the
SQHE plateau transition [25, 30]. Fig. 1(e) matches the
states in Figs. 1(b,d,f,g).

In Fig. 2, we compare the computed τ(q) spectrum for
every state in regularly spaced energy bins to the class
CI and C predictions, for k = {1, 7}. We introduce a
“fitness” criteria, defined as follows. For each eigenstate
ψ(r), we compute the error between the numerical spec-
trum [≡ τN (q)] and the appropriate analytical prediction
[≡ τA(q)], error(q) ≡ |τN (q) − τA(q)|/τA(q). If the error
is less than or equal to 6% for 75% of the evaluated q-
points in the interval 0 ≤ q ≤ qc, we keep the state. We
consider bins of 36 states each; the states within each
bin have consecutive eigenenergies. The height of each
bar marked “EWZNW” (“EP”) denotes the percentage of
eigenstates in the bin starting with energy E that match
the class CI (class C) prediction. The energies in each
left panel of Fig. 2 should be compared to the numerical
density of states shown in the corresponding right panel.

Fig. 2 indicates that for k = 1 the finite energy states
match well the class C SQH prediction (bins EP with
E ∈ {0.4, . . . , 0.7} for N = 40). The plot for k = 7 shows
a narrower band of finite energy states that match class
C for the chosen disorder strength; results for k = 8 are
similar [33]. Results for a larger k = 1 system (N = 46)
appear at the bottom of Fig. 2, showing that the statistics
at finite energy improve with increasing system size.

The finite-energy results for τ(q) shown in
Figs. 1(b,d,f,g) were obtained from the bin with
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FIG. 2. Population statistics for critically delocalized eigen-
states. The bars in each graph give the percentage of states
with consecutive energy eigenvalues lying within a narrow en-
ergy bin that match a certain fitness criterion. The bar la-
beled “EWZNW” (“EP”) denotes the percentage of eigenstates
in the bin beginning with energy E that match the class CI
(class C) prediction for the multifractal spectum (see text for
details). The bar energy labels should be compared to the cor-
responding density of states (DoS). The top two plots have
N = 40, while the bottom has N = 46. In the latter case even
the lowest energy bin has more class C than class CI states.
The disorder strength λ = 1.6π (16π) for k = 1 (7).

the highest percentage of states matching the class C
SQH prediction for each value of k. I.e., for k = 7, the
red solid curve in Fig. 1(d) was obtained by averaging
over states in the bin starting with energy E = 2.1
(Fig. 2). We emphasize that while the fitness criterion
introduced above is arbitrary, the trends are not [33].

We show finite-size trends in Fig. 3. Here we plot ∆(q)
for q = 2, 3, which are well-distinguished for the class CI
(low-energy) and class C (finite-energy) analytical pre-
dictions [10, 17]. The trends for increasing N suggest
convergence towards the analytical results.

Population statistics (computed as in Fig. 2) for vari-
able disorder are shown in Fig. 4. Stronger disorder con-
verts more of the low-energy spectrum from class CI to
class C in a fixed system size. We also plot the second in-
verse participation ratio P2, which becomes appreciable
only in the high-energy tail. Since P2 ∼ ζ−2 for a state
with localization length ζ [2, 3], localization (if it occurs
[45]) is restricted to high energies, and does not encroach

upon the wide “multifractal spin metal” class C region.

Conclusion.—Our results are completely different from
a 2D system with delocalization at only one energy, as
in the quantum Hall plateau transition [2]. Although lo-
calized states arbitrarily close to that transition appear
critical on large scales, the criticality reflects the tran-
sition itself. By contrast, here we find (1) the expected
class CI criticality near zero energy, and (2) a robust,
completely different, non-standard class C criticality over
a wide swath of finite energy states. This swath does not
shrink as the disorder strength or system size is increased.

Although we observe “localization” [45] in the high-
energy tail (Fig. 4), we believe that this is an artifact of
the unphysical UV truncation of the TSC surface Hamil-
tonian. A real 3D TSC would hybridize 2D surface states
with the bulk when the surface energy crosses the bulk
gap. We expect that all states in this case are delocal-
ized, and that all of the 2D surface states below the gap
show class C criticality (except the one at zero energy).

The class CI zero energy state is described by a
Wess-Zumino-Novikov-Witten (WZNW) nonlinear sigma
model [17, 18]. The energy perturbation breaks the sym-
metry from G × G down to G, where G = Sp(4n) (us-
ing replicas, with n → 0). This relevant perturbation
presumably induces a renormalization group (RG) flow
to another sigma model with lower symmetry. This ar-
gument is insufficient to choose between the orthogonal
metal class AI [manifold Sp(4n)/Sp(2n) × Sp(2n)] and
class C [manifold Sp(4n)/U(2n)] [3]. If the class CI model
is deformed to class C “by hand,” the WZNW term be-
comes a theta term (with theta proportional to k) [33].

q=2

q=3

q=2

q=3

2 3 4 N
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(q
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0.0

(q
)

0.2
0.4
0.6
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k = 7, Low-energy states

k = 7, Finite-energy states

k = 1, Finite-energy states

FIG. 3. Finite-energy and low-energy ∆(q) as in Fig. 1, but
for fixed q = 2, 3 and for varying system sizes N . The intrinsic
disorder correlation length and strength are kept fixed [33].
The blue and green lines are the exact analytical predictions
for ∆(2, 3) [10, 17]. The solid points show the average, while
error bars indicate the standard deviation within the energy
bin. The main effect of increasing N is to reduce the fluctua-
tions, although the reduction is slower for q closer to qc (= 4
for class C). See [33] for full ∆(q) and population statistics.
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FIG. 4. Disorder strength (λ)-dependence of the population
statistics for k = 1. Blue (red) bars marked CI (C) describe
the percentage of states that match the class CI (C) multi-
fractal spectrum; results are shown for λ ∈ {0.8, 1.2, 2.0}π and
N = 46. λ = 2π corresponds to strong disorder (the freezing
transition for the abelian AIII model [12, 14, 43]). The main
effect of increasing λ is to decrease the percentage of CI-like
states. The second IPR P2 (red dots) is superimposed over
the associated DoS in the right-hand plots. Even for strong
disorder, this becomes appreciable only in the high-energy
“Lifshitz tail,” possibly signaling localization there [45].
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