Cooperative Gas Adsorption without a Phase Transition in Metal-Organic Frameworks
Joyjit Kundu, Jürgen F. Stilck, Jung-Hoon Lee, Jeffrey B. Neaton, David Prendergast, and Stephen Whitelam
Phys. Rev. Lett. 121, 015701 — Published 3 July 2018
DOI: 10.1103/PhysRevLett.121.015701
Cooperative gas adsorption without a phase transition in metal-organic frameworks

Joyjit Kundu1,2, Jürgen F. Stilck3, Jung-Hoon Lee1,4, Jeffrey B. Neaton1,4,5, David Prendergast1 and Stephen Whitelam†

1 Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2 Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
3 Instituto de Física and National Institute of Science and Technology for Complex Systems, Universidade Federal Fluminense, Av. Litorânea s/n, 24210-346 - Niterói, RJ, Brazil
4 Department of Physics, University of California, Berkeley, California 94720-7300, USA and
5 Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, USA

(Dated: May 25, 2018)

Cooperative adsorption of gases by porous frameworks, which permits more efficient uptake and removal than the more usual non-cooperative (Langmuir-type) adsorption, usually results from a phase transition of the framework. Here we show how cooperativity emerges in the class of metal-organic frameworks mmen-M2(dobpdc) in the absence of a phase transition. Our study provides microscopic understanding of the emergent features of cooperative binding, including the position, slope and height of the isotherm step, and indicates how to optimize gas storage and separation in these materials.

Introduction – Metal-organic frameworks (MOFs), porous crystalline materials with tunable molecular properties and large internal surface areas, are promising candidates for gas capture and separation [11,4-6]. In equilibrium [7], most gas adsorption within MOFs can be described by Langmuir-type adsorption isotherms, in which the quantity of adsorbed gas varies gradually with pressure or temperature [8,12]. It is technologically more convenient, however, to have the quantity of adsorbed gas vary in an abrupt way with pressure and temperature. This phenomenon is known as cooperative adsorption, and is exhibited by a small handful of gas-framework combinations. These include CO adsorption in Fe2Cl2(bbt) [13], CH4 adsorption in Fe(bdp) [14], and CO2 adsorption in diamine-appended MOFs [15,16], in MIL-53 [17,18], and in a bifunctional MOF [19]. Cooperativity in most of these cases is attributed to a first-order phase transition [20-24] or a dynamic rearrangement [20,25] of the framework. However, for the case of diamine-appended MOFs (mmen-, en-, men-, or den-M2(dobpdc), where M stands for the metal Mg, Mn, Fe, Co, or Zn), there exists no evidence of structural dynamism or a phase transition of the structure or adsorbate – which forms one-dimensional ammonium carbamate chains at high pressure – making the origin of cooperativity unclear.

Here we show how this cooperativity emerges in the absence of an underlying phase transition. Experimental studies and quantum mechanical density-functional theory (DFT) calculations had previously revealed that, at low partial pressure of CO2, the gas molecules are adsorbed as single molecules or as carbamic acid pairs [26]. At high partial pressure, by contrast, CO2 undergoes chemisorption, by forming one-dimensional ammonium carbamate chains that run down the channels of the MOF, along the c-axis [15]. The statistical mechanics of one-dimensional structures [28] indicates that chain formation cannot be accompanied by a phase transition: finite-temperature phase transitions in one dimension require long-range interactions, and there are no indications of long-range interactions in the system (either direct or mediated by the framework). By mapping CO2 adsorption in mmen-M2(dobpdc) to an exactly solvable statistical mechanical model, parameterized by our DFT calculations, we show that the mean chain length of CO2 within the MOF-pores undergoes a sharp change with pressure, leading to cooperativity in the absence of an underlying phase transition. Amine-functionalized MOFs have emerged as one of the best framework types for CO2 capture and separation because, unusually for MOFs, they capture CO2 selectively in the presence of water [15, 15, 29]. Our results provide a microscopic understanding of cooperativity in these MOFs, and reveal strategies for its control. In what follows we describe our calculations and their implication for optimizing CO2 capture in experiments.

Model – We start by considering binding geometries and affinities of CO2 within mmen-M2(dobpdc). CO2 can bind within this class of MOFs as 1) a single molecule, 2) a bound (carbamic acid) pair, or 3) as part of a polymerized (ammonium carbamate) chain of molecules involving the ligands through its insertion at the metal sites [15]. Pairs form in the ab-plane [27]; see Fig. 1(a,b). By contrast, chains are formed parallel to the c-axis, along any of 6 lanes around the periphery of the MOF channel, but usually do not interact in the ab-plane [20]. For mmen-MOF built from the metals Mg, Mn, Fe, Co, and Zn, experiments and DFT calculations show that molecules in the chain conformation are lower in energy than molecules in the single- and pair conformations [15,27] (see Table I in the SI). Our DFT calculations (see SI Sections S1 and S2) also indicate that CO2 molecules at the end of a chain are higher in energy than those in the interior of a chain. Entropically, by...
Let the statistical weights for a single bound molecule, of \(m_{\text{men-M}} \) cause the distance between the lanes in some versions of the channel. We have also considered a 2-lane model, based on isotherms seen in MOFs in which pair-binding is significant. The 2-lane and 6-lane models capture, in addition, fine features of adsorption in all experiments we consider. The 6-lane model captures the basic physics of cooperative binding pairs can only bridge alternate pairs of lanes. We have observed all possible CO\(_2\) conformations within this class of MOF. (c) Our statistical mechanical models of \(m_{\text{men-M}} \) in example configurations.

The thermodynamics of this system can be described by the equilibrium polymerization model \[^{31}\] sketched in Fig. 1(c). This is a lattice model, extended in one dimension (corresponding to the \(c \)-axis of the MOF). Lattice sites can be vacant, occupied by a single particle (a CO\(_2\) molecule), or occupied by a particle that is a member of a pair or a chain of particles. We further distinguish chain end sites from chain interior sites. In some versions of \(m_{\text{men-M}_2(dobpdc)} \), e.g. where \(M \) is Mg or Mn, the bound-pair binding affinity is small enough, relative to the chain, that it can be ignored \[^{27}\] (see Table I in the SI). In these cases it is sufficient to consider a 1-lane model, which represents one of the six lanes running along the \(c \)-axis. In the presence of the bound-pair conformation we need to allow finite extent in the \(ab \)-direction. A 6-lane model is then required to describe all possible CO\(_2\) conformations within the 6-lane MOF channel. We have also considered a 2-lane model, because the distance between the lanes in some versions of \(m_{\text{men-M}_2(dobpdc)} \) is such that the framework is best described as 3 independent 2-lane structures (i.e. CO\(_2\)-pairs can only bridge alternate pairs of lanes). We have solved the 1-, 2- and 6-lane models exactly. The 1-lane model captures the basic physics of cooperative binding in all experiments we consider. The 2-lane and 6-lane models capture, in addition, fine features of adsorption isotherms seen in MOFs in which pair-binding is significant (see SI Sec. S4 for details).

Model solution – We start with the 1-lane model. Let the statistical weights for a single bound molecule, a molecule internal to a chain, and a molecule at either end-point of a chain be \(g_1 W_1 \), \(g_{\text{int}} W_{\text{int}} \), and \(g_{\text{end}} W_{\text{end}} \), respectively. Here \(g_\alpha = V_\alpha \Lambda^{-3} q_{\text{inter,}}(\alpha = \{1, \text{int}, \text{end}\}) \). The factor \(V_\alpha \Lambda^{-3} \) arises from the configurational partition sum and is related to the translational entropy of the adsorbate; \(\Lambda \) is the de Broglie wavelength; and \(V_\alpha \) is the free volume accessible to the adsorbate in the conformation \(\alpha \) \[^{20}\]. The factor \(q_{\text{inter,}} \) is the partition sum of CO\(_2\) due to its internal degrees of freedom in the conformation \(\alpha \) \[^{32}\]. These statistical weights can be related to the energy of a particle in conformation \(\alpha \) via \(W_\alpha = \exp[\beta(\mu - E_\alpha)] \), where \(\beta = 1/(k_B T) \), and \(\mu \) is the chemical potential, set by the pressure \(P \) of CO\(_2\) in the bulk. We convert \(\mu \) to \(P \) using the ideal gas relation for a linear triatomic molecule, \(e^{\beta \mu} = \beta P V^3 \). To simplify notation we define \(K_\alpha = g_\alpha W_\alpha \). We then have \(K_\alpha = \beta P V_\alpha e^{-\beta E_\alpha} \). We set \(V_1 = 500 \ A^3 \), \(V_{\text{int}} = V_{\text{end}} = 11 A^3 \) using simple geometric arguments (see SI Sec. S5): the single bound CO\(_2\) molecule has orientational entropy associated with the corresponding di-amine, while CO\(_2\) in the chain conformation is almost frozen.

We solve this model in the thermodynamic limit, using standard transfer-matrix methods \[^{31}\] to give the free energy \(f = -k_B T \ln \lambda_+ \) (\(\lambda_+ \) is the largest eigen value of the transfer matrix—see SI Sec. S3 for details), where

\[
2 \lambda_+ = 1 + K_1 + K_{\text{int}} + \sqrt{(1 + K_1 - K_{\text{int}})^2 + 4 K_{\text{end}}^2}.
\]

The free energy has a singularity (so admits a phase transition) only in the experimentally inaccessible limit in which chain end-points are energetically infinitely unfavorable (\(K_{\text{end}} = 0 \), with \(1 + K_1 = K_{\text{int}} \)). For experiment-
tional parameters the free energy is analytic, thus no phase transition occurs.

Model-experiment comparison – Despite the absence of a phase transition, the isotherm of adsorbed CO\textsubscript{2} versus pressure displays a sharp step (when $K_{\text{int}} > K_{\text{end}}$, K_1) similar to those seen in experiment; see Fig. 2. To convert lattice-site occupancies $\rho = -\beta P(\partial f/\partial P)$ to experimental units we multiply our calculated density by the theoretical maximum uptake capacity (q_{M}) of the MOF for each M. The values of q_{M} are listed in Table III in the SI. For each metal, the isotherms in the left-hand panels in Fig. 2 are generated by using the model in “predictive” mode, with binding energy parameters taken from DFT calculations (Table I in the SI). In the right-hand panels we use binding-energy inputs taken from experiment. The comparison shows that a combination of quantum and statistical mechanics, with no experimental input, can reproduce the sharp step seen in experimental isotherms, and can capture the trend in step-pressure with temperature.

For the metals Mg and Mn, considered in Fig. 2(a,b), we use the 1-lane model, because pair-binding is energetically disfavored. For the other metals we use the 6-lane model (detailed in SI Sec. S4), because the bound-pair conformation, characterized by binding energy E_1 and free volume V_1, is free-energetically significant (Table I in the SI). For Co, the statistical weight of pairs is sufficiently higher than that of chains at low pressures (shorter chains cost more energy), justifying the steeper rise of the isotherm before the step. For Nickel, the chain conformation is not statistically favorable even at high pressures (Table I in the SI), thus, chain polymerization does not occur, at least, at those pressures, explaining the absence of step in the isotherms (panel (f)).

The basic physics of adsorption in all cases is captured by the simple considerations described above. The step position is very sensitive to the statistical weight of the chain conformation. Small uncertainties in binding energies (calculated via DFT) and the free volume parameters (estimated geometrically) can alter the step position significantly, and both types of uncertainty contribute to the quantitative differences between the step position measured experimentally and obtained by the model in “predictive” mode (see Fig. S1). In the right-hand panels of Fig. 2 we show that additional fine features of binding, such as the rise of isotherms before and after the step, can be captured by including within the model two additional physical ingredients, namely the existence of secondary binding sites, and of a different mode of monomer binding. Details of these calculations are given in SI Sec. S6. Thus the model can provide insight into both the basic physics and the fine details of cooperative binding (e.g. the occupancy of different species as a function of pressure, measurable in NMR experiments; see Fig. S2).

Origin of cooperative binding – The microscopic origin of the step in adsorption isotherms is a sudden but finite increase, with pressure, of the mean length of chains of CO\textsubscript{2}. The fraction of chains of length ℓ, r_ℓ, can be ex-
pressed in terms of densities of chain-internal monomers (\(\rho_{\text{int}}\)) and end-points (\(\rho_{\text{end}}\)), as

\[
\ell_t = \frac{\rho_{\text{end}}}{\rho_{\text{end}} + 2\rho_{\text{int}}} \exp[-(\ell - 2)/\ell_0],
\]

where \(\ell_0 \equiv -1/\ln[2\rho_{\text{int}}/(\rho_{\text{end}} + 2\rho_{\text{int}})]; \rho_{\text{end}} = 2K_{\text{end}}^2\omega/(1 - \omega K_{\text{int}})/D; \rho_{\text{int}} = K_{\text{end}}^2\omega/(\omega K_{\text{int}})/D; D = (1 + K_1)(1 - \omega K_{\text{int}})^2 + K_{\text{end}}^2\omega(2 - \omega K_{\text{int}}); \) and \(\omega \equiv 1/\lambda_+\) (Ref. [35] & SI Sec. S7). The average chain length is \(\langle \ell \rangle = 2 + \rho_{\text{end}}\ell_0^2/(\rho_{\text{end}} + 2\rho_{\text{int}})\).

The chain-length distribution for the 1-lane model, Eq. (2), decays exponentially at all pressures, including at the step pressure \(P^*\) (which satisfies \(d^2\rho/dP^2|_{P^*} = 0\)). In Fig. 3(a) we plot \(\ell_t\) for Mn. In panel (b) we plot the mean chain length \(\langle \ell \rangle\), as a function of pressure, for different metals at 313 K. CO\(_2\) molecules undergo polymerization beyond a threshold pressure, leading to a sharp increase results in the step-like feature of the isotherm (Langmuir-type behavior is observed when \(K_1 \gtrsim K_{\text{int}}\)). The rise is gradual when chain-end points are energetically equivalent to internal points (see SI Fig. S5). In the infinite-pressure limit the mean chain length tends to a finite value \(\langle \ell \rangle_{\infty}\) (given by Eq. (S15) in the SI). For Mg and Mn at 313 K, for instance, \(\langle \ell \rangle_{\infty} \approx 35 \mu\text{m}\) and 22 \(\mu\text{m}\), respectively (the typical grain size in experiments is \(\sim 10 \mu\text{m}\) [15]).

In Fig. 3(c) we show that the bond-bond correlation length (the distance over which fluctuations of bond occupancies are correlated) displays a (non-diverging) maximum at the step position (see SI Sec. S8). The behavior shown Fig. 3 looks superficially like a phase transition, but it is not: both the mean length of chains and the bond-bond correlation length remain finite. Fig. S9 shows that the size-scaling properties of polymerization are distinct from those of a phase transition; these predicted trends could be assessed experimentally given sufficient control over MOF grain size.

Conclusions – We have used a combination of quantum and statistical mechanics to show that cooperative CO\(_2\) adsorption in the class of diamine-appended metal-organic frameworks does not require an underlying phase transition – it results from an abrupt (but finite) change, with pressure, of the mean length of ammonium carbamate chains resident within the framework. Our calculations provide microscopic understanding of each feature of the isotherm, and so suggest how to alter these features for experimental convenience. For instance, the adsorption isotherm can be made more abrupt by increasing the penalty for chain end-points – see Fig. S5. In addition, understanding of cooperativity in these systems suggests ways of inducing cooperativity in gas-framework combinations in which it is absent (e.g. mmen-Ni\(_2\)(dobpdc)), e.g. by introducing binding agents that can stabilize the chain polymerization (see SI Sec. S6 and Fig. S6). A similar mechanism may explain why CO\(_2\) uptake in mmen-Ni\(_2\)(dobpdc) is enhanced in the presence of H\(_2\)O [29]. Our model can be used to predict the isotherm for other frameworks within the same class, e.g. with different ligands or metals. Future work will focus on investigating the kinetics of polymerization in these frameworks.

We thank Rebecca Siegelman, Márcio J. de Oliveira, and Alexander C. Forse for discussions and comments on the manuscript. This work was done as part of a User project at the Molecular Foundry at Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02–05CH11231.
JK and JHL were supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under award DE-SC0001015. JN, DGP, and SW were partially supported by the same Center. JFS was partially supported by CNPq. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and used the Savio computational cluster provided by the Berkeley Research Computing program at the University of California, Berkeley (supported by the UC Berkeley Chancellor, Vice Chancellor for Research, and Chief Information Officer).

* jkundu@lbl.gov
* dgprendergast@lbl.gov
* swhitelam@lbl.gov

[7] MOFs can also be productively used out of equilibrium: see e.g. Refs. [29, 37].
[32] \[q_{\text{vib}} = \frac{q_{\text{rot}}}{\sigma} \] \[q_{\text{rot}} = \frac{\hbar^2 k_B T}{\pi^2} \prod_{j=1}^{\ell} \int_{\theta_{\text{min}}/2}^{\pi} \exp(-\theta_{\text{min}}/2\pi) \text{d} \theta \] \[\theta_{\text{min}} = \hbar \nu_{j}/k_B ; \nu_j \text{ corresponds to the frequency of } j\text{-th normal mode of vibration}. \]
[33] This approximation is reasonable because cooperative behavior in experiment is observed at pressures of 1 bar or below, where CO$_2$ behaves as an ideal gas; using the...
Peng-Robinson equation of state for CO\textsubscript{2} we checked that the fugacity coefficient of CO\textsubscript{2} at 1 bar is ≈ 0.99.

\[K_\alpha = g_\alpha W_\alpha = \frac{V_\alpha \Lambda^3 q_{\text{inter},\alpha} \exp(\beta \mu) \exp(-\beta E_\alpha)}{V_\alpha \Lambda^3 q_{\text{inter},\alpha} (\beta P \Lambda^3 q_{\text{inter.bulk}}) e^{-\beta E_\alpha}} \approx \beta PV_\alpha e^{-\beta E_\alpha}. \]

