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This paper presents a new parametric instability mechanism caused by a distribution fT of particles
trapped in the potential wells of a wave-train. This mechanism is intended to describe a nonlinear insta-
bility in Trivelpiece-Gould [TG] waves[1, 2], and could also be a destabilizing factor in a range of nearly-
collisionless nonlinear plasma waves. The theory is compared to particle in cell [PIC] simulations of TG
waves.

Many plasmas exhibit parametric instabilities, in which
longer-wavelength "daughter waves" grow on a shorter-
wavelength nonlinear "pump" wave. The instability
has been observed in laser-plasma experiments,[3, 4] in
tokamaks[5, 6] and other magnetic confinement devices[7,
8], and in nonneutral plasmas[1, 2, 9], and studied in theory
and simulation for many years in a range of scenarios.[10–
15]Here we consider a novel instability mechanism caused
by particles trapped in, and carried along by, the fields of
the pump wave. The instability mechanism is quite sim-
ple and fairly general, and may therefore be applicable to a
range of nonlinear wave phenomena in which particles are
trapped in the wave.

The mechanism applies to waves with a nearly acoustic
dispersion relation, ω(k ) ≈ c k , in which the pump wave
decays to daughter waves of the same type (i.e. on the same
branch of the dispersion relation). This case describes
experiments[1, 2] involving large amplitude Trivelpiece-
Gould plasma waves[16, 17] traveling axially along a non-
neutral plasma column. Under these circumstances, it
has been previously shown that the classic three-wave the-
ory of parametric instability,[10] based on ideal fluid equa-
tions, is inapplicable; and that in fact ideal fluid theory pre-
dicts that the pump wave is stable at all amplitudes.[18]
We show that parametric instability arises when "weakly-
trapped" particles are included in the theory. We compare
to PIC simulations, which observe parametric instability
only when such weakly-trapped particles are present, at a
growth rate consistent with the new theory.

The instability mechanism is as follows. Consider a non-
linear pump wave with amplitude A, wavenumber k and
phase speed u .[19] The growth of daughter waves with
wavenumber k/2 and speed close to u (the most unstable
case) corresponds to a slow relative motion of the pump
wave peaks; pairs of adjacent peaks approach one-another
and recede from neighboring pairs. Any particles trapped
between the approaching peaks of the pump wave are adi-
abatically heated, while any particles trapped between re-
ceding peaks are cooled.

This heating and cooling would normally produce
restoring forces that stabilize the relative motion of the
peaks. However, some weakly-trapped particles are heated
enough to become untrapped, and these particles are then
retrapped and cooled between receding peaks (an un-
trapped particle moving toward a receding peak can reflect
from it and lose energy, becoming trapped). The net effect
of this detrapping and retrapping is to change the sign of

the restoring force, producing a trapped particle force that
amplifies the modulations.

A simplified model for this process applies to pump
waves made up of a chain of soliton-like potential peaks,
each separated by a large wavelength L compared to their
width. Each potential well in the chain has a trapped parti-
cle distribution fT (v ) (Fig. 1a). Consider the trapped parti-
cle distributions f1(v ) and f2(v ) in adjacent wells. Initially,
both f1 and f2 equal fT . In the instability, the two adjacent
peaks that trap f1 slowly reduce their separation byδL . The
next peaks recede from one-another by the same distance
δL (Fig. 1b). This motion is replicated along the wavetrain,
creating a periodic structure with period 2L (the daughter
wave, with twice the pump wavelength).

Trapped particles are adiabatically compressed in the
first well, and f1(v ) changes from fT (v ) to fT (v L1/L ) ≡
f f i na l

1 (v ), where L1 = L − δL . The density change for

these particles is δn1 = 2
∫ vs

0
d v

�

f f i na l
T − fT

�

where vs is
the separatrix speed, given in terms of the peak height Es

by m v 2
s /2 = Es . Taylor expansion to first order in δL and

integration by parts gives the density change as

δn1 = 2
δL

L

∫ vs

0

d v
�

fT (v )− fT (vs )
�

. (1)

If fT (vs ) = 0, the density change in the compression is pos-
itive. However, for weakly-trapped particles with a distri-
bution satisfying fT (vs ) ≥ fT (v ) for |v | < vs , δn1 is negative
under compression. This occurs because particles escape
the potential well as they are heated (Fig. 1b).

The trapped-particle distribution f2(v ) between the re-
ceding peaks can be analyzed the same way. This distribu-
tion changes from fT (v ) to

f f i na l
2 (v ) =

§

fT (v L2/L ), 0< v < vs L/L2

fT (2vs − v L2/L ), vs L/L2 < v < vs
(2)

where L2 = L+δL . The second form for f2 is from particles
retrapped from the other well.

The total kinetic energy change δET = δE1 + δE2 for
these trapped particles is

δET = 2

∫ vs

0

d v
m v 2

2

�

L1 f f i na l
1 + L2 f f i na l

2 −2L fT (v )
�

, (3)

After Taylor-expansion and integration by parts, one finds
that δET is second-order in δL (as expected since ±δL
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FIG. 1: PIC simulation showing energy versus position in a
TG wave with trapped particles, at two times.

must give the same energy change): δET =−βδL 2, where

β =
6

L

∫ vs

0

d v m v 2
�

fT (vs )− fT (v )
�

. (4)

For a weakly-trapped distribution with β > 0 the process
reduces the kinetic energy of the trapped particles. This
energy change can drive the instability.

An approximate expression for the decay instability
growth rate can now be found by treating the wavetrain as
a chain of solitons. A soliton’s energy E0 is a function of
its speed u . Adjacent solitons change velocities by +δu
and −δu respectively, where δu = (1/2)dδL/d t . Then
the energy change per pair is δE0 = α(δu )2 where α =
∂ 2E0/∂ u 2 > 0 is the “inertial mass” of a soliton. This en-
ergy change is due to work done by trapped particles, and
energy conservation δE0+δET = 0 implies the ODE

α(δL̇/2)2−β (δL )2 = 0. (5)

This ODE yields an exponential growth rate Γ for δL (t )
given by Γ = 2

p

β/α. (There is also an exponentially-
decaying solution with decay rate Γ .) The growth rate in
this model is proportional to the square root of the number
of trapped particles, and instability occurs for any number
of trapped particles, no matter how small (provided that
β > 0, i.e. the distribution is weakly-trapped).

This simple model can be made somewhat more realis-
tic by noting that, in the ideal fluid model of nonlinear TG
waves, interacting solitons repel (the solitons are elevated
density regions of like-sign charge)[18]. The repulsion adds
a restoring energyκ(δL )2 per pair to the energy of the chain
of solitons, and hence to Eq. (5):

α(δL̇/2)2+κ(δL )2−β (δL )2 = 0, (6)

which implies the growth rate is modified to

Γ = 2
Æ

(β −κ)/α. (7)

Now instability requires that the trapped particle fraction
must be sufficiently large to overcome the natural repul-
sion between wave potential/density peaks.

A more general kinetic theory of the instability applies
to waves of any amplitude or wavelength, and treats the
system as a cold fluid plus a weak tail distribution that in-
cludes trapped particles. Neglecting tail particles, the non-
linear wave is assumed to be a steady solution of the cold
fluid equations[18] with density n (s ), fluid velocity V (s )
and potential φ(s ) = Ĝ n as seen in the wave frame, where
Ĝ is the Green’s function operator for Poisson’s equation.
The tail particles are treated as a perturbation. The tail dis-
tribution function fT is assumed to evolve adiabatically in
the wave potential. The initial tail distribution is a function
of particle energy, fT = fT (E )where E =m v 2/2+φ(s ) , and
v is particle velocity in the wave frame. Collisionless adi-
abatic theory implies that changes in the tail distribution,
caused by changes δφ(s , t ) in the wave potential , are

δ fT (s , v, t ) =
∂ fT

∂ E

�

δφ(s , t )−〈δφ〉(E , t )
�

, (8)

where 〈·〉 is an average along a particle trajectory in phase
space holding energy E fixed.[20]

The cold fluid evolves according to fluid equations cou-
pled to the tail particles via the wave potential. The per-
turbed fluid velocity δV (s , t ) and density δn (s , t ) follow
linearized continuity and momentum equations,

∂

∂ t

�

δn
δV

�

+
∂

∂ s

�

V δn +nδV
V δV +δφF /m

�

=−
∂

∂ s

�

0
δφT /m

�

.

(9)
Here we have broken the perturbed wave potential δφ
into two pieces, a fluid portion δφF ≡ Ĝδn and a portion
δφT ≡ ĜδnT arising from the tail density δnT =

∫

d vδ fT ,
using Eq. (8) for δ fT .

To analyze stability of solutions to Eqs. (9), consider the
eigenmodes of the equation. Let ψ0(s ) ≡ (δn0(s ),δV0(s ))
be a complex vector eigenfunction of Eq. (9) with no tail
particles (δφT = 0). That is,ψ0 satisfies

iω0ψ0 = L̂ ·ψ0, (10)

with a linear matrix operator L̂ ≡ ∂
∂ s

�

V n
Ĝ /m V

�

, where ω0

is the eigenfrequency.
The operator L̂ is anti-Hermitian with respect to a ma-

trix inner-product: for any two eigenfunctionsψ1 andψ2,
[ψ1, L̂ ·ψ2] =−[ψ2, L̂ ·ψ1]∗, where

[ψ1,ψ2] =

∫

d sψ∗1 ·
�

Ĝ † mV
mV mn

�

·ψ2, (11)

and where Ĝ † is the left Green’s function operator defined
as δφ = δnĜ †. The anti-Hermitian property of L̂ implies
that[21] (i) all eigenfrequencies are real; (ii) ψ∗0 is also an
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eigenfunction with eigenfrequency −ω0; (iii) [ψ0,ψ∗0] = 0
provided ω0 6= 0. Result (i) implies that steady travel-
ing wave solutions to the cold fluid equations are stable,
from which it follows that three-wave theory for paramet-
ric instability[10] cannot apply to this system, conclusions
found via a more circuitous route in Ref. 18.[22]

Furthermore, Eq. (11) implies that [ψ0,ψ0] is real and is
equal to four times the eigenmode energy δE0:

[ψ0,ψ0] = 4δE0 =

∫

d s
�

nm |δV0|2+mV (δn0δV ∗0 +δV0δn ∗0)

+δn0δφ
∗
0

	

, (12)

where δφ0 ≡ Ĝδn0 is the eigenmode potential. [Real-
ity of δE0 follows from the symmetry

∫

d sδn1Ĝδn2 =
∫

d sδn2Ĝδn1 for any δn1 and δn2.]
The effect of the tail particles can now be handled with

degenerate perturbation theory, assuming that the fraction
of tail particles is small. Including these particles, an eigen-
modeψ≡ (δn ,δV ) of Eq. (9), with frequencyω, satisfies

iωψ= L̂ ·ψ+ Ĉ ·ψ, (13)

where Ĉ ·ψ ≡ ∂ /∂ s (0,δφT /m ) is treated as a small per-
turbation. Then the most unstable eigenmode will be per-
turbed away from the unperturbed pair (ψ0,ψ∗0) that have
the smallest frequencies (ω0,−ω0). In degenerate per-
turbation theory, we write ψ = aψ0 + bψ∗0 +∆ψ, where
[ψ0,∆ψ] = [ψ∗0,∆ψ] = 0, and where ∆ψ is small. Substi-
tuting forψ in Eq. (13), using Eq. (10) and its complex con-
jugate, and dropping the small term Ĉ ·∆ψ yields

iω(aψ0+ bψ∗0+∆ψ) =

iω0(aψ0− bψ∗0) + L̂ ·∆ψ+a Ĉ ·ψ0+ b Ĉ ·ψ∗0. (14)

Taking inner products of this equation with respect to ψ0

and ψ∗0, the ∆ψ terms vanish and one obtains two cou-
pled homogeneous equations for the coefficients a and b ,
which can be written in matrix form as M·(a , b ) = (0, 0). Set-
ting the determinant of the matrix M to zero determines
the eigenfrequency ω as ω2 = ω2

0 − (X + X ∗)ω0 + |Y |2 −
|X |2, where X = i [ψ0, Ĉ ·ψ0]/[ψ0,ψ0] and Y = i [ψ0, Ĉ ·
ψ∗0]/[ψ0,ψ0]. Since X and Y are small the |Y |2 − |X |2 term
can be dropped, and to first order in the tail density the
eigenfrequency is

ω2 =ω2
0−2Xω0, (15)

where we take X real (this is shown later). Instability occurs
when X > ω0/2. The coefficient X can be directly related
to the tail distribution. Using Eqs. (11) and (12),

X = i

∫

d s (V δn ∗0 +nδV ∗0 )∂ δφT /∂ s

4δE0

=−ω0

∫

d sδn ∗0δφT

4δE0
=−ω0

∫

d sδφ∗0δnT

4δE0
, (16)

where we integrated by parts and used the complex con-
jugate of the continuity equation (the first element of

Eq. (10)), and the final form employed symmetry of the
Green’s function. The tail density δnT is obtained by in-
tegrating over δ fT given by Eq. (8):

δnT (s ) =

∫

d v
∂ fT

∂ E
(E )

�

δφ0(s )−〈δφ0〉(E )
�

, (17)

where for simplicity we have dropped δφT on the right
hand side, keeping only the potentialδφ0 = Ĝδn0 from the
fluid densityδn0 in the eigenmode. We can do this because
δφT �δφ0, since the tail particle density is assumed small.
Applying Eq. (17) to Eq. (16) yields

X =
ω0

4δE0

∫

d s d v
∂ fT

∂ E

�

|〈δφ0〉|2− |δφ0(s )|2
�

. (18)

Thus, the coefficient X is real, and proportional to the frac-
tion of tail particles.

We can now connect Eq. (15) to the previous expression
for the growth rate, Eq. (7). In that simplified model we
treated the wavetrain as a chain of weakly-interacting soli-
tons. As one soliton moves by δL/2 and the next moves
by −δL/2, the wave potential change in each soliton is
δφ0(s ) =±(1/2)δL∂ φ(s )/∂ s whereφ(s ) is the equilibrium
soliton potential. This potential is mainly local to each soli-
ton, and therefore the |δφ0(s )|2 term in Eq. (18) is negligi-
ble compared to |〈δφ0〉|2. As shown in Ref. 20, the bounce-
average of δφ0 is then given by 〈δφ0〉 = ±m v 2δL/L for
trapped particles (those with speed |v | < vs ), and is zero
for untrapped particles, where the upper (lower) sign is
for compressing (expanding) potential wells. Applying this
to Eq. (18) and integrating in v and in s over one pair of
wells (of length 2L) yields 2ω0X = (ω0δL )2β/δE0 where
β is given by Eq. (4). Here we have used E = m v 2/2,
∂ fT /∂ E = (1/m v )∂ fT /∂ v , and have performed an inte-
gration by parts in v . Substituting for 2ω0X in Eq. (15)
and again taking δE0 = α(δu )2 where |δu | = ω0δL/2 is
the change in soliton speed, results in the growth rate Γ =
Æ

4β/α−ω2
0, which is equivalent to Eq. (7).

We now compare this theory of parametric instability to
PIC simulations of a nonlinear TG wave. The simulations
are in the wave frame, using periodic boundary conditions
with period 2L , with N = 106 particles of charge e and mass
m . The Poisson equation relating density to potential in
these 1D simulations is ∂ 2φ/∂ s 2 − k 2

⊥φ = −4πe 2n , where
k⊥ is the perpendicular wavenumber of the waves[2, 18], a
free parameter in the simulations; in Fig. 1 k⊥L = 10π. The
initial particle distribution in the wave frame (where par-
ticles are flowing to the left with mean speed u) is nearly a
delta-function at energy Ew above the potential minimum.
The resulting density and fluid velocity create a large am-
plitude wave with A = 0.078, stationary in this frame. To
this distribution NT = 2000 tail particles are added, dis-
tributed uniformly in phase space between energies from
Ew down to Em = 0.9Es (Fig. 1a). This creates a population
of about 400 trapped particles.

In Fig. 1b the distribution is shown at time ωp t = 400,

where ωp =
p

4πe 2n0/m is the plasma frequency. The
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wave peaks have moved spontaneously and trapped par-
ticles have been heated in the left well, causing them to
become untrapped and then retrapped in the right well,
where trapped particles are cooled to lower energy. The
change δL (t ) in the distance between wave peaks in-
creases exponentially with time[24], and an exponential fit
gives the growth rate for the instability.

Figure 2 displays growth rates versus the number NT

of tail particles (with fT the same functional form as de-
scribed above) for two amplitude and k⊥ values. The
dots are growth rates measured in simulations. The solid
lines are Eqs. (15) and (18). The fluid wavefunctions
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FIG. 2: Growth rates in simulations (points) and from
Eq. (15) (lines) versus number of tail particles , for two

cases: red: a very nonlinear wave (φ shown in Fig. 1) and
blue: a less nonlinear wave (see Fig. 3)
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FIG. 3: Top: Density, potential and velocity in the cnoidal
wave used for the blue data in Fig 3. Bottom: Least-stable

fluid eigenmode. Solid:real; dashed: imaginary

n (s ), V (s ),φ(s ), the eigenfunctionψ0 = (δn0,δV0), and the

frequency ω0 are evaluated using the methods described
in Ref.18 ; see Fig. 3 for examples. For the more nonlinear
wave (red data) ω0 is quite small and the simple "chain-
of-solitons" model provides a growth rate estimate, Γ =
2
p

β/α with β given by Eq. (4). One can show[18] that
for large-amplitude TG solitons α ≈ 16mn0/k⊥, with n0 =
N /(2L ). For uniform fT ≈ NT /(4L (vw − vm )) ≡ fT 0 when
vm < |v | < vw (where vw =

p

2Ew /m = 1.22ωp/k⊥ and

vm =
p

2Em/m = 0.96ωp/k⊥), β/α ≈ (4/16)( fT 0/N )k⊥v 3
m .

This gives Γ = 0.16
p

NT /Nωp , within 30% of Eq. (15). For
the weaker wave (blue data) the open symbols are below
the instability threshold. In these cases δL (t ) oscillated at
the plotted rates, rather than exponentially increasing. The
blue dashed curve is the frequency predicted by Eq. (15).

These simulations varied the number of tail particles NT

(proportional to the trapped particle number) holding the
functional form of fT fixed, but in other simulations (not
shown) the tail distribution was modified, taking Em > Es ,
so that there were no trapped particles. No instability was
observed for any NT , as the new theory predicts.

The parametric instability discussed in this paper arises
from a novel effect: when compressed by a growing daugh-
ter wave, weakly-trapped particles "change sides" by be-
coming detrapped and then retrapped, and thus amplify
the compression. The growth rate scales roughly as the
square root of the trapped particle fraction. Two versions
of the theory were presented: a chain-of-solitons model
and a novel kinetic theory; and the theories were com-
pared to PIC simulations. The simulations and theory
are for traveling waves, but we have also observed simi-
lar growth rates for standing waves of relevance to previ-
ous experiments[1, 2]. Future work will extend the the-
ory to standing waves and compare to simulations and ex-
periments. The new theory may also be relevant to other
plasma waves such as BGK states[25] and electron acoustic
waves[9, 26], where trapped particles play a central role in
the wave dynamics; ion acoustic waves, where trapped par-
ticles have been observed to affect parametric decay[14];
and waves in other systems such as 2-D nearly-inviscid flu-
ids, where exchange of vorticity across moving flow separa-
trices (for example, in nonlinear Kelvin waves[27–29]) may
have similar consequences to the effects considered here.
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