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Composites formed from charged particles and magnetic flux tubes, proposed by Wilczek, are one
model for anyons - particles obeying fractional statistics. Here we propose a scheme for realizing
charged flux tubes, in which a charged object with an intrinsic magnetic dipole moment is placed
between two semi-infinite blocks of a high permeability (µr) material, and the images of the magnetic
moment create an effective flux tube. We show that the scheme can lead to a realization of Wilczek’s
anyons, when a two-dimensional electron system, which exhibits the integer quantum Hall effect
(IQHE), is sandwiched between two blocks of the high-µr material with a temporally fast response
(in the cyclotron and Larmor frequency range). The signature of Wilczek’s anyons is a slight shift of
the resistivity at the plateau of the IQHE. Thus, the quest for high-µr materials at high frequencies,
which is underway in the field of metamaterials, and the quest for anyons, are here found to be on
the same avenue.

PACS numbers: 73.43.-f, 05.30.Pr, 03.65.Vf

In 1982 Wilczek pointed out that a composite object
consisting of a charged particle and a flux tube, referred
to as anyon, would obey fractional statistics [1]. Anyons
exist in a two-dimensional (2+1)D space [1, 2]. They are
Abelian or non-Abelian, depending on how their wave-
function evolves under particle exchange [3]. When two
Abelian anyons are exchanged, the wavefunction acquires
a phase factor. Non-Abelian anyons can exist when the
system has some degeneracy, such that exchange of two
anyons corresponds to a unitary transformation of the
wavefunction in the space of degenerate states [3]. Apart
from the fundamental interest in anyons, non-Abelian
anyonic quasiparticles, if experimentally realized, could
become the building blocks of fault-tolerant topological
quantum computers [3, 4]. In this Letter, we propose an
experimental realization of the original Wilczek’s model
for (Abelian) anyons [1].

Our scheme for creating charged flux tubes involves
two semi-infinite blocks of a high permeability (high-µr)
material (µr≫1), which are separated by some distance
d, and a charged object with an intrinsic magnetic dipole
moment. The object is located in the center of the slab
between the high-µr materials, and its magnetic dipole
moment is perpendicular to the surface of the blocks.
The image potential of one such magnetic moment, aris-
ing from the high-µr material, creates an effective flux
tube, thereby realizing flux-tube-charge composite, as il-
lustrated in Fig. 1(a). The object could, for example,
relate to an electron or a trapped ion, which have intrin-
sic magnetic moments.

We use this scheme in a particular system to develop a
proposal for a realization of Wilczek’s anyons. Consider
a two-dimensional electron gas (2DEG) placed in a per-
pendicular uniform magnetic field, which gives rise to the

FIG. 1: (Color online) The scheme which gives rise to
Wilczek’s flux-tube-charge composites. (a) A charged ob-
ject with an intrinsic magnetic dipole (blue circle with a red
arrow) induces an array of image magnetic dipole moments
within high-µr blocks (shaded gray), which can be inter-
preted as a flux-tube-charge composite (central illustration).
(b) A 2DEG in a uniform magnetic field B0 (in the IQHE
state) is sandwiched between two blocks of high-µr material.
Dipole magnetic moments of the electrons are aligned with
B0, and behave as Wilczek’s flux-tube-charge composites via
the mechanism depicted in (a).

integer quantum Hall effect (IQHE) [5, 6]. Suppose that
we sandwich the 2DEG between two semi-infinite blocks
of high-µr material, assumed to have a fast temporal re-
sponse, see Fig. 1(b). The electron spins (i.e., magnetic
dipole moments) will be aligned due to the Zeeman ef-
fect, while the high-µr material will induce a flux tube
attached to each electron. For this system, we exploit
the exact many-body wavefunction and calculate the Hall
conductance. A signature of the presence of anyons in
this system is striking: the Hall resistance at the plateau
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of the IQHE, which serves as a standard of electrical re-
sistance [5, 7, 8], would be slightly shifted. We discuss
possible implementations of the proposed system, the ob-
stacles, and possible ways to overcome them.
In the search for the physical realization of anyons,

quasiparticle excitations in two-dimensional interacting
many-body systems play a major role [3]. A paradigm of
quasiparticles with fractional statistics are excitations in
the fractional quantum Hall effect (FQHE) [9–14]. The
manifestation of both the IQHE and FQHE is a plateau
in the Hall conductivity at νe2/h, where the filling factor
ν is an integer for the IQHE, and a fractional value for
the FQHE. The key ingredients in the FQHE, described
by the famous Laughlin state [10, 11], are 2D electrons
in a strong uniform magnetic field [9] and Coulomb in-
teractions [10, 11]. In contrast, Coulomb interactions are
not needed to explain the IQHE [5, 6]; hence, we ne-
glect them in our system. One way to explain the FQHE
is via composite fermions [15–18], where an electron is
bound to an even number of the flux quanta, and the
fractional Hall conductivity is interpreted as a manifes-
tation of the IQHE of such composite fermions. In the
context of the QHE, anyons in a uniform magnetic field
and corresponding wavefunctions have been studied [19–
23]. A slight shift of the Hall resistance at the IQHE
plateau discussed here, which occurs from the conversion
of electrons into Wilczek’s flux-tube-charge composites -
anyons - can be thought of as a variant of the composite
fermions, however, with a completely different physical
background.
Here we propose to convert electrons into anyons by in-

troducing an electron-electron (e-e) vector potential me-
diated by the high-µr material. Our starting point is a
2DEG (in the z=0 plane) in a magnetic field B0=B0ẑ
exhibiting IQHE. We assume that the electrons popu-
late only the lowest Landau level, i.e., the filling factor
is ν=1. The two semi-infinite blocks of high-µr material
with µr≫1 are then introduced in the region |z|>d/2, see
Fig. 1(b). The method of current images from classical
electrodynamics models the influence of high-µr blocks
on electrons, and allows one to calculate the magnetic
vector potential A(r) in the |z|<d/2 slab, due to mag-
netic dipole moment of a single electron [24]. For a sta-
tionary magnetic dipole m=mẑ located at the origin, in
the limit µr→∞, A(r) is identical to that of an infi-
nite array of magnetic moments deep within semi-infinite
blocks. These virtual images are equal in magnitude and
direction to the original magnetic moment, and equally
spaced by d, as illustrated in Fig. 1(a). Thus, for r=|r|
sufficiently larger than d, an array of magnetic moments
can be viewed as a flux tube with A(r)≈Φ/2πrφ̂, where
the flux is Φ=µ0m/d. For a finite value of µr, the vector
potential in the z=0 plane is given by

A(r) =
Φrd

4π

∑

n∈Z

(

µr − 1

µr + 1

)|n|
1

(r2 + n2d2)
3

2

φ̂. (1)

FIG. 2: (Color online) Parameter −∆=− eπ−1
~
−1

∮
A ·dl as

a function r/d, for three values of µr; d=10 nm (see text for
details).

In order to estimate the validity of the approximation
A(r)≈Φ/2πrφ̂, in Fig. 2 we plot ∆= e

π~

∮

A ·dl as a func-
tion of r and µr (e < 0); the integral is taken around
the circle of radius r centered at the origin. Evidently,
for µr=∞, ∆ is essentially a constant independent of r
(except for r<d), verifying that the flux Φ=

∮

A · dl is
concentrated close to the origin, and the approximation
is excellent. For finite values of µr=104−105, ∆ changes
very slowly over a large span of values of r from d up to
the mean free path lm.f.p. in standard QHE samples [25],
which underpins the approximation in realistic circum-
stances. For concreteness, we plot Fig. 2 for d=10 nm,
and −∆ is plotted up to 10000 nm, but similar results
are obtained for a span of values d=10−100 nm. We as-
sume that the medium has sufficiently fast response, so
that this picture is valid for a moving electron as well.
This gives rise to the vector potential interactions be-
tween the electrons. The viability of the proposal and
approximations are discussed below.
If an electron encircles a fixed solenoid of flux Φ,

its wavefunction accumulates the Aharonov-Bohm phase
exp(ieΦ/~), but the same phase arises also from a
quantum-mechanical solenoid orbiting around a fixed
charge. Thus, the e-e vector potential mediated by the
high-µr material is equivalent to that of a charge inter-
acting with twice the flux in one flux tube [26, 27], that
is, the interaction is 2eA(ri − rj), where

A(ri − rj) =
Φ

2π

ẑ × (ri − rj)

|ri − rj |2
. (2)

In the presence of a magnetic field, the electron energies
of the up and down spins split due to the Zeeman ef-
fect. In large magnetic fields, large energies are needed
to flip the spin; restricting to low energies, we can ne-
glect electrons with magnetic moments opposite to that
of the magnetic field. Under the assumptions and ap-
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proximations stated above, the system is described by
the Hamiltonian

H =

n
∑

i=1

1

2m

[

p− eA0(ri)− 2e
∑

j 6=i

A(ri − rj)
]2
, (3)

with the symmetric gauge vector potential A0 = 1

2
B0×r

for the constant magnetic field.
Electron-electron vector potential in (3) is eliminated

by a singular gauge transformation,

ψ′(r1, ..., rn) =
∏

i<j

e−iφij∆ψ(r1, ..., rn), (4)

where φij is the azimuthal angle of the relative vector
ri−rj and ψ({ri}) is the fermionic wavefunction in the
regular gauge. Note that the wavefunction ψ′ is multi-
valued. The wavefunction describing the electrons in the
lowest Landau level, with the e-e vector potential, in the
singular gauge is [19, 21–23]

ψ′({zi}{z
∗
i }) =

∏

i<j

(zi − zj)
αexp(−

1

4l2B

∑

l

|zl|
2), (5)

where we have introduced complex coordinates
zi=xi+iyi, the magnetic length lB=

√

~/eB0, and
the statistical parameter α=1−∆. The energy of this
state is independent of α, E=n~ωc/2, where ωc=eB/m
is the cyclotron frequency.
To calculate the Hall conductance in this system, we

use the Laughlin’s pumping argument in the Corbino ring
geometry [6, 28]. Suppose that we introduce an infinitely
thin solenoid at z=0, and adiabatically increase the flux
from 0 up to Φ0 = 2π~/e (one flux quantum). The state
(5) adiabatically evolves into

ψ′
0({zi}{z

∗
i }) =

∏

i

zi ψ
′({zi}{z

∗
i }), (6)

which is an eigenstate of the system with the same energy.
In this process, charge q∗ is pumped from the solenoid
(at z = 0) to the edge of the ring. It can be calculated
from the single particle densities, ρα for the state (5),
and ρα,0 for the state (6). The calculation is performed
analytically in the thermodynamic limit N→∞ by using
the plasma analogy, first introduced by Laughlin [11] (see
Refs. [29, 30] for details),

ρα(x, y) =
1

2παl2B
(7)

and

ρα,0(x, y) =
1

α

[

1

2πl2B
− δ(x)δ(y)

]

. (8)

Evidently, the missing charge at z = 0 is q∗=e/α, which
yields

σH = q∗
e

h
=

1

α

e2

h
(9)

for the Hall conductivity. One can say that by attaching a
flux Φ to every electron, one slightly reduces the Pauli re-
pulsion between the electrons, which depletes the charge
pumped to the edges by a factor α−1.

Thus, before we place the two high-µr blocks in the
system, the initial value of the Hall conductivity is νe2/h
with ν=1 by assumption. After placing the blocks, which
induce the e-e vector potential, the Hall conductivity
at the plateau shifts from ν=1 to 1/α=1/(1−∆)≈1+∆.
The shift −∆ is plotted in Fig. 2, and it has the value
∼ 10−7−10−6 (see Fig. 2). Despite the fact that the shift
is small, ∆σH∼10−7× e2/h, measurements indicate that
the value of the quantized Hall resistance can be repro-
duced within a relative uncertainty of one part in 1010 [8],
meaning that the shift in the Hall conductance could be
detectable as the signature of Wilczek’s anyons. In addi-
tion, we note that as the e-e vector potential is introduced
(a flux tube with flux Φ is adiabatically attached to every
electron), according to the adiabatic principle developed
by Greiter and Wilczek [20], the system remains gapped,
i.e., incompressible quantum Hall states remain incom-
pressible.

Now we discuss possible implementations of this sys-
tem, the obstacles and possible routes to overcome them.
We have assumed that the e-e vector potential picture
is valid also for electrons moving in the 2DEG, even
though it was derived for static electrons. In the clas-
sical picture, electrons exhibiting the Hall effect move in
circular orbits with the cyclotron frequency, giving rise
to oscillating fields that material should respond to. In
the quantum picture, electrons are in the Landau level
states. Recent experiments [31] have demonstrated that
the currents corresponding to electrons promoted in Lan-
dau level states oscillate at cyclotron (ωc = eB/m∗)
and Larmor frequencies (Ω = eB/2m∗), depending on
the particular state; here m∗ is the effective mass of
electrons. Therefore, we conclude that the demanded
high-µr material should have a strong magnetic response
in the frequency range corresponding to cyclotron mo-
tion. A typical system for the QHE is the interface of a
GaAs/AlGaAs heterojunction where m∗ = 0.067me [32],
and the frequencies are in the THz range. Unfortu-
nately, the magnetic response of most conventional ma-
terials is beginning to tail off in the GHz region [33]. A
few natural magnetic materials that respond above mi-
crowave frequencies have been reported, but the mag-
netic effects in these materials are typically weak (see
Ref. [34] and references therein). These restrictions can
in principle be overcome by using metamaterials, artifi-
cial structures which can be constructed to have a strong
effective magnetic response µeff (ω) at high frequencies
(GHz-THz) [33–35]. Another advantage of using meta-
materials in this context is that their response is usu-
ally not broadband. Therefore, a high-µr metamaterial
at THz is likely to have low response (or none) at zero
frequency (for example, see [36]), and would not be af-
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fected by the constant magnetic field used to create IQHE
state. One possible route for constructing a desirable
metamaterial could be photonic doping, recently used to
construct a material with effective µeff→∞ [36] for po-
larization where magnetic field is parallel to the surface
(here we demand that the magnetic field is perpendicular
to the surface). The characteristic scale of the building
constituents of the metamaterial should be smaller than
the magnetic length lB, so that the concept of the ef-
fective macroscopic permeability remains valid. Another
possibility to overcome the obstacle of fast material re-
sponse is to reduce the Fermi velocity and thereby the
cyclotron frequency by involving heavy fermion materi-
als, in which electrons have a large enough effective mass.
The cyclotron frequency scales as 1/m∗; thus, to bring
the cyclotron frequency down to GHz range, by using
typical numbers from above, the effective mass of the
electrons should be m∗∼102me.

An important parameter, which should be tuned to get
the desired effect is the distance between the high-µr ma-
terials d. The flux tube approximationA(r)≈Φ/2πrφ̂ for
the vector potential of an electron, which is illustrated in
Fig. 2, is excellent already for r>d. We find that for val-
ues of µr∼104 and larger, it is excellent up to r∼lm.f.p.

and more (this depends on µr). It gives rise to the e-e
interactions (2). Hence, the average separation between
electrons should be greater than d for Eq. (2) to apply.
In standard IQHE experiments, the electron density is
1011 − 1012 cm−2, so that the average separation is of
the order of 20 nm, but in principle it could be larger.
For larger values of d (say d∼30−60 nm), the flux tube
approximation is even better at scales from d to lm.f.p..
However, the shift in the Hall conductivity ∆σH , which is
the signature of the effect, scales as 1/d. Thus, we must
find an appropriate value for d smaller than the average
separation between electrons, and small enough for the
effect to be measurable, but large enough to be possi-
ble to sandwich a thin material with IQHE between two
blocks of high-µr material. This is a viable task accord-
ing to the parameters used in Fig. 2. Moreover, assuming
one could tune d in an experiment, measurement yield-
ing ∆σH ∼ 1/d would be a clear evidence of Wilczek’s
anyons in this system. Since the area of the IQHE sam-
ple is finite and ∇ · B = 0, when r→∞, −∆→0. Thus,
the high-µr materials should have a large aspect ratio
(height much larger than the square root of the area), to
properly steer the magnetic streamlines.

Before closing, we note that a promising possibility to
observe Wilczek’s flux tubes is to engineer 2D materi-
als [37]. To this end, we propose to intercalate a metallic
monolayer between two layers of hexagonal boron nitride
(h-BN); this could be Li, K, Na or some other metallic
monolayer [38, 39]. The density-functional theory cal-
culations for h-BN-Li-h-BN monolayer show structural
stability and a parabolic band dispersion [40]. The prin-
ciple of intercalation is here very similar to such intercala-

tion in graphite, which has been extensively studied [41].
The h-BN - metallic monolayer - h-BN structure can in
principle be sandwiched between two blocks of the high-
µr material, thus constituting a candidate for observing
anyons according to our scheme. Another route could
be to grow a metallic monolayer on a film of a semicon-
ductor as in Ref. [42], and place it between the high-µr

blocks (the semiconductor should be sufficiently pure, not
to conduct). Viable paths could also be conceived with
layered dichalcogenides [37].

For concreteness, our theoretical analysis above is
based on the QHE with electrons in a 2D parabolic band.
The most famous 2D material - graphene - has the conical
band structure [43–45]. However, graphene sandwiched
between two blocks of high-µr material could also be a
candidate for exploring (Wilczek-Dirac type) anyons ac-
cording to the present proposal. Although the quantum
Hall effect in graphene is distinctive, as it occurs at half-
integer filling factors [43, 44], the Landau-level wavefunc-
tions for low-energy electrons in graphene have the same
mathematical structure as in the 2DEG (up to the co-
efficients that enter these wavefunctions [45]). Thus, we
conjecture that the signature of Wilczek’s flux tubes in
this system would also be a small shift of the resistance
at the plateau. Graphene also has the possibility to be
strained [46] and induce effective gauge fields, which is
additional useful degree of freedom when tinkering with
this system.

In conclusion, we have proposed a scheme for creat-
ing flux-tube-charge composites, which employs a mate-
rial with high magnetic permeability µr. Thus, advances
in developing high-µr metamaterials could lead to novel
ways for creating anyons. We have calculated the Hall
conductivity for a 2DEG in the IQHE regime, sandwiched
between two semi-infinite blocks of high-µr metamaterial
with a fast temporal response, and found that the Hall
resistance at the plateau would exhibit a small but de-
tectable shift, which is to some extent a striking conse-
quence because it serves as a standard of electrical re-
sistance [5, 7, 8]. Finally, we would like to note that
the quest for anyons is of broad interest and underway
in many systems including ultracold atomic gases [47–
49], photonic lattices [50] and quantum spin liquids [51].
Our scheme for creating charged flux tubes has potential
to be used in other systems such as trapped ions. Here
we have addressed Abelian anyons. We believe that fur-
ther studies inspired by this proposal could yield schemes
for realizing non-Abelian anyons for topological quantum
computing [3].

We acknowledge useful discussions with J. Jain, N.
Lindner, M. Hafezi, T. Dubček, E. Tafra, M. Basletić,
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