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Bulk FeSe is a special iron-based material in which superconductivity emerges inside a well-
developed nematic phase. We present a microscopic model for this nematic superconducting state,
which takes into account the mixing between s−wave and d−wave pairing channels and the changes
in the orbital spectral weight promoted by the sign-changing nematic order parameter. We show
that nematicity only weakly affects Tc, but gives rise to cos 2θ variation of the pairing gap on the
hole pocket, whose magnitude and size agrees with ARPES and STM data. We further show that
nematicity increases the weight of dxz orbital on the hole pocket, and increases (reduces) the weight
of dxy orbital on Y (X) electron pocket.

Introduction. Superconductivity in FeSe has attracted
a lot of attention recently because this material holds
the promise to reveal new physics not seen in other Fe-
based superconductors [1]. The pairing in FeSe emerges
at T ≤ 8 K from a state with a well-defined nematic
order, which develops at a much higher Ts ∼ 90 K.
Because nematic order breaks the C4 tetragonal sym-
metry down to C2, it mixes the s−wave and d−wave
pairing channels [2–4]. As a result, the pairing gap on
the Γ−centered hole pocket, ∆(θ), has both s−wave and
d−wave components, ∆(θ) = ∆1 + ∆2 cos 2θ, where ∆1

and ∆2 are C4−symmetric functions of cos 4θ. This gap
form is generic, but the relative sign between ∆1 and
∆2 depends on details of the pairing interaction and the
structure of the nematic order.

The cos 2θ gap anisotropy on the hole pocket (“h”
pocket in Fig. 1) has been probed recently by angle re-
solved photoemission spectroscopy (ARPES) [5–9] and
scanning tunneling microscopy (STM) [10, 11] measure-
ments. These probes have shown that (i) the gap is larger
along the direction towards the X electron pocket made
out of dyz and dxy orbitals, than towards the Y pocket
made out of dxz and dxy orbitals (Fig. 1); and (ii) the
magnitude of the gap on the X pocket correlates with
the weight of the dyz orbital component. This led to
the proposal [10] that the pairing glue in FeSe is orbital-
selective and predominantly involves dyz fermions.

To support this argument, Refs. [10, 12] analyzed the
pairing problem within BCS theory, using the static in-
teraction in the spin channel as the glue. They argued
that the observed gap anisotropy can be reproduced only
if one phenomenologically sets the interaction on the dyz
orbital to be the strongest. This was done by introducing
different constant Z−factors for each orbital. Constant
orbital-dependent Z do not give rise to incoherence, but
re-calibrate the interactions on different orbitals.

In this paper we reconsider this issue. We argue that
adding different Z-factors to dxy and dxz/dyz orbitals is
a legitimate way to incorporate high-energy renormaliza-
tions, which make interactions on dxy and dxz/dyz or-
bitals unequal[13–15]. On the other hand, dxz and dyz
orbitals become different only in the presence of nematic
order. The latter is of order 10 meV (Refs. [10, 16, 17]),

Figure 1. The Fermi surface and its orbital content in the
nematic phase of FeSe. In the 1-Fe Brillouin zone there is
a hole (h) pocket centered at Γ/Z = (0, 0) and two electron
pockets X and Y centered at (π, 0) and (0, π), respectively.
STM and ARPES data [5, 10] show that the h pocket is an
ellipse elongated along Y , and that the X electron pocket has
a peanut-type form with the minor axis along the Y direction.

much smaller than the electronic bandwidth. As a re-
sult, the dxz/dyz splitting is a low-energy phenomenon
which, we believe, should be fully captured within the
low-energy model, without introducing phenomenologi-
cally Zxz 6= Zyz.

In our approach we depart from the tetragonal phase
with the Γ/Z-, X-, and Y -centered Fermi pockets in the
1-Fe Brillouin zone. We use the low-energy model of
Ref. [18] to parametrize the dispersion near these three
points, and the model of Ref. [13] for the dxz/dyz pairing
interactions in the s−wave and d−wave channels. We in-
troduce a two-component d−wave nematic order param-
eter Φ̄ = (ndxz

−ndyz
)/2 = (Φ̄h, Φ̄e), where h and e refer

to hole and electron pockets. It reconstructs the Fermi
pockets to an ellipsoidal hole pocket elongated along the
Y direction, and a peanut-like X electron pocket [5–
10, 16, 17, 19] (see Fig. 1). A simple analysis shows that
this holds when the nematic order changes sign between
hole and electron pockets: Φh > 0 and Φe < 0, The sign
change is consistent with theoretical analysis [13, 20–22].
We take as an input the results of earlier studies [13–
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15, 20, 23, 24] that the largest pairing interaction at low-
energies is between hole and electron pockets. This in-
teraction is angle-dependent in the band basis and has
s+− and dx2−y2 components Us and Ud, respectively. Us

is larger, and in the absence of nematicity the system
develops an s+− order. We dress up Us and Ud by co-
herence factors associated with the nematic order, solve
the gap equation, and obtain Tc and the structure of the
superconducting gap in the nematic phase [25].

Our results show that Tc is only moderately affected
by nematicity, but it gives rise to a sizable anisotropy
of the gap on both hole and electron pockets. This is
consistent with the phase diagram of S-doped FeSe1−xSx,
which shows that Tc changes little around x < 0.17, when
nematic order disappears, and with hermal conductivity,
specific heat, and STM data [26–29], which show that
the gap anisotropy changes drastically between x < 0.17
and x > 0.17.

For the gap on the hole pocket we find ∆(θh) ≈
∆h(1 + α cos 2θh + β cos 4θh), where the cos 2θh term
is induced by nematicity. To leading order in Φ̄, α ∝
(4|Φe| − (Ud/Us)Φh), where Φh,e are dimensionless or-
bital orders, normalized to the corresponding Fermi en-
ergies (see [30] and Eq (5) below). The Φh term reflects
the nematicity-induced mixing between the s and d pair-
ing components whereas the Φe term is related to the
nematicity-induced redistribution of the orbital weight
on the electron pockets. We computed Φh,e using band
structure parameters which fit the ARPES data for the
Z pocket (kz = π) [30] and found that α > 0. A positive
α can be interpreted as if nematicity makes the pairing
interaction between the Γ and X pockets stronger than
between the Γ and Y pockets [10] We emphasize, how-
ever, that this effect is captured within the low-energy
model.

In Fig. 2 we show the calculated ∆(θh) along with
the gap anisotropy extracted from the STM data[10, 36].
We see that the agreement is quite good. We found
equally good agreement with the ARPES data for the
Z-pocket [5–8]. We also computed the gap at the smaller
Γ pocket (kz = 0) and found a smaller gap with a weaker
anisotropy. This arises because the dimensionless Φh

is larger for a smaller pocket and because the whole Γ
pocket has predominantly dxz character [30]. A smaller
gap at Γ agrees with the ARPES data in [5, 7] but not
with [9].

Low-energy model. We consider a quasi-2D model of
bulk FeSe, with two corrugated cylindrical dxz/dyz hole
pockets, centered at the kx,y = 0, with the largest cross-
section at kz = π and the smallest at kz = 0 (Refs.
[5, 7, 9, 16, 31]) and two cylindrical dyz/dxy and dxz/dxy
electron pockets centered at (π, 0, kz) and (0, π, kz) in the
Fe-only Brillouin zone (X and Y pockets). We model the
low-energy electronic structure on each pocket by spinors,
following Ref. [18, 32]. We choose parameters such that
in the tetragonal phase the larger hole pocket h has dxz
character along the Y direction and dyz character along
the X direction, consistent with ARPES experiments [5–

Figure 2. Angular dependence of the pairing gap on the hole
pocket obtained by numerically solving the gap equations
with band structure parameters and nematic order param-
eters fitted to ARPES data above Tc. The gap maximum is
along the Γ −X direction, consistent with STM and ARPES
data [5–10, 19]. Points are STM data from Ref. [10]. The gap
function ∆(θh) = ∆h(1 +α cos 2θh + β cos 4θh) has the cos 2θ
terms induced by nematicity (which we explicitly computed),
as well as C4-symmetric anisotropic cos 4θ terms present al-
ready in the tetragonal phase due to spin-orbit coupling [18]
and/or due to dressing of the pairing interaction by high-
energy fermions [13, 23].

7, 9, 16, 19, 31]
The band operators for h, X, and Y pockets are ex-

pressed in terms of the orbital operators as

h = dyz cosφh + dxz sinφh

eX = −idyz cosφX + dxy sinφX

eY = idxz cosφY + dxy sinφY , (1)

In the tetragonal phase, the h-pocket is nearly circular
and in the absence of spin-orbit coupling (SOC) φh ≈
θh, where θh is the angle measured with respect to the
X axis. On electron pockets, to a good approximation
cosφX,Y = A sin θX,Y , sinφX,Y = (1 − A2 sin2 θX,Y )1/2,
where A < 1 and θX (θY ) is the angle measured with
respect to the X (Y ) direction [3, 14].

In the nematic phase we introduce momentum-
dependent d−wave nematic order with components ±Φ̄h

on hole pockets (plus sign on dxz orbital) and Φ̄(Y ) =
−Φ̄(X) = Φ̄e. For simplicity we neglect the dxy com-
ponent of the nematic order [14, 33]. Eqs. (1) still hold
in the presence of nematicity, but the relations between
φh, φX , φY and the angles along the Fermi surfaces be-
come different. For the hole pocket, we define the dimen-
sionless Φh via cot 2φh = cot 2θh− 2Φh/ sin 2θh, again in
the absence of SOC (the full expressions with SOC are
presented in [30]). Roughly, Φh = Φ̄h/EF . For the same
Φ̄h, Φh is larger on the Γ pocket than on Z pocket, be-
cause EF is smaller at Γ. For the electron pockets we find
that the relations cosφX,Y = A sin θX,Y also hold, but A
becomes different for X and Y pockets. We define the di-
mensionless Φe via AX ≈ A(1−Φe) and AY ≈ A(1+Φe).

To match ARPES and STM data for the shapes of the
h and X pockets, Φh must be positive and Φe negative.
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A positive Φh increases the dxz spectral weight on the
hole pocket, particularly when Φh > 1/2, see Fig. 3a. At
Φh ≥ 1 the hole pocket is almost entirely dxz. A negative
Φe increases the weight of the dyz orbital on the the X
pocket and reduces the weight of the dxz orbital on the
Y pocket, as shown in Fig. 3b. We computed the dimen-
sionless Φh,e using Φ̄h = 10meV, |Φ̄e| ∼ 20meV (Refs.
[10, 17, 34]) and band structure parameters that fit the
ARPES data for the Z pocket [34, 35] in the nematic
phase above Tc and obtained [30] |Φe| ∼ 0.1, Φh ∼ 0.3.
For such Φh the orbital weight along the Z pocket still
interpolates between dxz and dyz. For the Γ pocket, we
obtained Φh ∼ 0.7. The the whole h pocket becomes
predominantly dxz. In both cases, the orbital content
does not depend strongly on the SOC, and to simplify
the analysis we neglect SOC in the solution of the gap
equations.
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Figure 3. The change of orbital weight on the hole pocket (a)
and on the electron pockets (b) between the tetragonal phase
(dashed line) and the nematic phase (solid lines) The angle
θX (θY ) is measured with respect to the X (Y ) direction. For
the hole pocket, we present the results including the SOC λ̄

(the band splitting at kx,y = 0 is ±
√

Φ̄2 + λ̄2/4). We used
λ̄ = 2Φ̄h.

Pairing interaction. We use as an input the results
of earlier studies[10, 13–15, 23] that the largest pairing
interaction is the pair hopping between hole and elec-
tron pockets, consistent with the observed enhancement
of (π, 0)/(0, π) magnetic fluctuations [37–39]. In the band
basis, the pair-hopping pairing interaction has the form

Hpair = h†kh
†
−k
[
Us

(
eX,peX,−p cos2 φX + eY,peY,−p cos2 φY

)
+Ud cos 2φh

(
eX,peX,−p cos2 φX − eY,peY,−p cos2 φY

)]
(2)

where repeated momentum indices are implicitly
summed and spin indices are omitted. In the tetrago-
nal phase, cos2 φX,Y = A2(1 − cos 2θX,Y )/2, φh = θh,
and the two terms in (2) describe pairing interactions in
the s−wave and d−wave channels with couplings Us and
Ud, respectively. The ratio Us/Ud = (U+J)/(U−J) > 1
already at the bare level, where U and J are Hubbard and
Hund’s interactions, and further increases under RG [13].
Then the leading instability in the absence of nematicity
is towards s+− superconductivity.

In the presence of nematic order the situation changes
because now cos 2φh ≈ cos 2θh − Φh and AX 6= AY . As
a result, the Ud term in (2) acquires extra terms which
have an “s−wave” angular dependence and effectively

renormalize the Us term, making this interaction different
for fermions near the X and Y pockets. Substituting
the forms of cos 2φh, cos 2φX and cos 2φY into (2) and
restricting to first-order terms in Φh and Φe, we obtain
the pairing interaction in the form

Hpair =
A2

2

∑
j=X,Y

h†kh
†
−k(Aj +Bj cos 2θh)ej,pej,−p (3)

where

AX,Y = (1− cos 2θX,Y ) [Us (1∓ 2Φe)∓ UdΦh]

BX,Y = ±Ud (1− cos 2θX,Y ) (1∓ 2Φe) (4)

Gap equations. We use Eqs. (3) and (4) to obtain the
linearized gap equations. The gap on the hole pocket is
parametrized by ∆(θh) = ∆h(1 + α cos 2θh), (we neglect
cos 4θ term to simplify presentation). The computational
steps are rather conventional [30]. To linear order in Φe,h,

α ≈ UsUd

U2
s − U2

d/2

(
4|Φe| −

Ud

Us
Φh

)
(5)

Notice that α depends only on the ratio Ud/Us, and not
on the strength of the interaction, which is compensated
by the Cooper logarithm.

We see that there are two contributions to the gap
anisotropy α, originating from the components of the ne-
matic order on hole and electron pockets. Because Φh

and Φe have opposite signs, the sign of α depends on
their strength and on the ratio between the interactions
Ud/Us. Because 4|Φe| > Φh and Ud/Us ≤ 1, we find
α ∼ 0.2 is positive, i.e., the gap ∆h(θh) has its maximum
along the X direction θh = 0. This is consistent with the
STM and ARPES data [5–10, 19]. The Φh term in (5) is
further reduced if we include that the ratio Us/Ud grows
under the renormalization group flow [13].

To go beyond this analytic expansion in powers of Φe,h,
we solved the gap equations numerically for the same set
of parameters, but not restricting to first order in Φh,e.
We found the same gap structure but somewhat larger
α ≈ 0.65. The result is shown in Fig. 2 along with the
STM data from Ref. [10]. For this plot, we added to
∆(θh) additional β cos 4θh term with β = −0.1. The
cos 4θh dependence arises already in the tetragonal phase
and is determined by details beyond our model.

The sign of the gap anisotropy can be interpreted as
the indication that in the nematic state the pairing in-
teraction between the h and X pockets becomes stronger
than between the h and Y pockets. Because the posi-
tive contribution to α comes from Φe, the increase of the
h −X interaction can be traced back to the increase of
dyz orbital weight on the X pocket. In this respect, qual-
itatively our results agree with Refs. [10, 12], where the
increase of the dyz orbital weight was introduced phe-
nomenologically, via an orbital dependent constant Z-
factor. However, in our theory the modification of the
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dxz/dyz orbital weights naturally emerges within the low-
energy model and does not require the inclusion of addi-
tional Z−factors.

On the electron pockets, to leading order in Φh,e, the
gaps have the forms ∆X,Y = −∆hγX,Y (1 − cos 2θX,Y ),
where γX,Y = γ [1± (2|Φe| − Ud/UsΦh + α/2)] and γ >
0 is a number whose value depends on the electronic
structure. The vanishing of the gaps at cos 2θX,Y = ±1
is an artifact of neglecting the dxy orbital in the pairing
problem. In reality, the gaps ∆X,Y tend to small but
finite values along the X and Y directions, respectively.
The ARPES and STM data reported an anisotropic, but
still sign-preserving gap on the X pocket, with gap max-
imum at θX = π/2, consistent with our formulas. The
overall sign of ∆X,Y is opposite to that of ∆h. The de-
pendence of γX,Y on the nematic order shows that the
gap magnitude is larger on the X pocket than on the Y
pocket. We propose to verify this in future experiments.

Fermionic self-energy. The STM data indicate that in
the nematic phase the Y pocket is less visible than the X
pocket, and in some ARPES studies [9, 40] this Y pocket
has not been observed. To understand this feature, we
computed the self-energy on both electron pockets to sec-
ond order in Us and Ud and extracted the actual quasi-
particle residues ZX,Y on each electron pocket [30]. We
find ZY > ZX simply because the effective interaction is
larger for fermions on the X pocket (we recall that larger
interaction leads to a smaller Z). If this was the only ef-
fect, we would expect the Y pocket to become more vis-
ible. However, like we said, nematic order also increases
the dyz spectral weight of the X pocket and decreases the
dxz orbital spectral weight of the Y pocket (see Fig. 3).
If the dxy orbital excitations are not observed in STM
and ARPES because of matrix elements, or if the dxy
orbital is more incoherent than the dxz/dyz orbitals [41–
44], then the Y pocket should indeed become less visible
in the nematic phase. We caution, however, that recent
ARPES study [9] did not find dxy excitations on the X
pockets to be more incoherent that dyz excitations, so
the reason why the Y pocket is less visible in STM and
some ARPES studies is not yet understood.

Conclusions. In this paper we argued that the ex-

perimentally observed anisotropy of the superconducting
gap in bulk FeSe can be explained within the low-energy
model for nematic order, without adding phenomenolog-
ically different quasiparticle weights for the dxz/dyz or-
bitals. Our key result is that Tc is not strongly affected
by the nematic order, but nematicity mixes s−wave and
d−wave pairing channels and gives rise to a cos 2θh gap
anisotropy on the hole pocket The sign of the cos 2θh
term is determined by the interplay between the nematic
order parameters on hole and electron pockets, which
are of different sign, and the relative strength of s−wave
and d−wave components of the pairing interaction. On
the Z pocket, we found a sizable cos 2θh gap anisotropy
with the gap maximum along the X direction, in agree-
ment with the data. In our calculations the gap on the
Γ pocket is smaller and less anisotropic. On the peanut-
like X pocket, the gap is found to be maximal along the
minor axis, which is also in agreement with the data. We
also argued that nematicity decreases the weight of the
dxy orbital on the X pocket and increases it on the Y
pocket. This may potentially explain why the Y pocket
is less visible in STM and in some ARPES data.
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