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We theoretically study the effects of electron-electron interaction in twisted bilayer graphene in a
transverse dc electric field. When the twist angle is not very small, the electronic spectrum of the
bilayer consists of four Dirac cones inherited from each graphene layer. An applied bias voltage leads
to the appearance of two hole-like and two electron-like Fermi surface sheets with perfect nesting
among electron and hole components. Such a band structure is unstable with respect to exciton
band-gap opening due to the screened Coulomb interaction. The exciton order parameter is accom-
panied by spin-density-wave order. The gap depends on the twist angle, and can be varied by a bias
voltage. This result correlates well with recent transport measurements [J.-B. Liu, et al., Sci. Rep.
5, 15285 (2015)]. Our proposal allows the coexistence of (i) externally controlled semiconducting
gap and (ii) nontrivial multicomponent magnetic order. This is interesting for both fundamental
research and applications.

PACS numbers: 73.22.Pr, 73.21.Ac

Introduction— A transverse electric field modifies
properties of various graphene systems [1]. For exam-
ple, it opens a gap in AB-bilayer electronic spectrum.
The gap is a consequence of the non-trivial chiral struc-
ture of the AB-bilayer Hamiltonian. Since twisted bi-
layer graphene (tBLG) [1–12] is in many ways similar
to two decoupled graphene sheets, one might naively as-
sume that a transverse bias introduces only minor modi-
fications to the tBLG spectrum. Contrary to this conjec-
ture, our theoretical analysis demonstrates that biased
tBLG exhibits unusual features, consistent with recent
experiments [13], of interest for both fundamental re-
search and applications. A particularly important aspect
of our model is a field-generated multicomponent Fermi

surface, with perfect nesting between hole and electron
sheets. Interactions destabilize the nested Fermi surface,
and the spectrum acquires a gap of exciton origin The gap
is controlled by the applied transverse voltage. Together
with the gap, two spin-density wave (SDW) order pa-
rameters, one per graphene valley, appear in the sample.
The presence of the magnetic properties distinguishes the
biased tBLG from the (magnetically trivial) biased AB-
bilayer. Remarkably, biased tBLG becomes a kind of tun-
able magnetic semiconductor. The interplay and interfer-
ence between two SDW orders is an additional intriguing
aspect of tBLG. Note that systems with perfect nesting
are rare (imperfect or partial nesting is much more com-
mon). The realization of such a Fermi surface is of funda-
mental importance: it allows to test SDW theories in its
simplest setting, without the need for uncontrolled ap-
proximations. Furthermore, upon doping, such systems
can demonstrate half-metallicity [14]. Currently, many-
body properties of AA and AB bilayer graphene [15–23]

are actively discussed by theorists, whereas for tBLG this
topic is barely touched [24, 25]. However, very recent
experiments indicate that tBLG host interesting many-
body phenomena: Mott insulator physics [26] and su-
perconductivity [27] at small twist angles, and tunable
semiconducting gap [13] at larger angles. While our for-
malism cannot describe the small-angle physics [26, 27],
theoretical conclusions for the higher-angle regime are
consistent with experiments [13].

Geometry of twisted bilayer graphene— A graphene
monolayer has a hexagonal crystal structure consisting
of two triangular sublattices A and B. Coordinates
of atoms in layer 1 are r1An = r1n ≡ na1 + ma2 and
r1Bn = r1n + δ, where n = (n, m) is an integer-valued
vector, a1,2 = a(

√
3,∓1)/2 are the primitive vectors (a =

2.46 Å), and δ = a(1/
√
3, 0). Atoms in layer 2 are located

at r2Bn = r2n ≡ dez+na′1+ma′2 and r2An = r2n−δ′, where
(a′1,2, δ

′) are the vectors (a1,2, δ) rotated by an angle
θ, and ez denotes the unit vector along the z-axis. The
interlayer distance is d = 3.35 Å. The limiting case θ = 0
corresponds to the AB stacking. The superstructure ex-
ists if cos θ = (3m2

0 + 3m0r + r2/2)/(3m2
0 + 3m0r + r2),

where m0 and r are co-prime positive integers. The num-
ber of graphene unit cells inside a supercell is Nsc =
(3m2

0 + 3m0r + r2)/g per layer, where g = 1 if r 6= 3n,
or g = 3 otherwise. The number of carbon atoms in the
superlattice cell is equal to 4Nsc.

We introduce b1,2 = 2π(1/
√
3,∓1)/a, which are the

reciprocal lattice vectors of the layer 1, and b′
1,2 for layer

2 (b′
1,2 are θ-rotated b1,2). The vectors G1,2 are the

elementary reciprocal vectors for the superlattice. These
quantities are related: b′

1 = b1 + r(G1 + G2) and b′
2 =

b2−rG1 if r 6= 3n, or b′
1 = b1+r(G1+2G2)/3 and b′

2 =



2

b2 − r(2G1 +G2)/3, otherwise. Each graphene layer has
two non-equivalent Dirac points located at the corners of
its Brillouin zone (BZ). Thus, the total number of Dirac
points for the bilayer is four. The Brillouin zone of the
superlattice is hexagonal-shaped. It can be obtained by
Nsc-times folding [28] of the Brillouin zone of the layer
1 or 2. As a result of this folding, Dirac points of each
layer are translated to two non-equivalent corners of the
reduced Brillouin zone, K1 and K2. Points K1,2 can be
expressed via vectors G1,2 as K1 = (G1 + 2G2)/3 and
K2 = (2G1 + G2)/3. The Dirac spectrum at K1,2 is
doubly degenerate since two non-equivalent Dirac points
of constituent layers lie at each corner of the Brillouin
zone of the superlattice after the folding. For more details
one may consult Refs. [1, 3, 29].
Model Hamiltonian.—We investigate the tight-binding

model for pz electrons in undoped tBLG: Ĥ = Ĥ0 +
Ĥint, where Ĥ0 is a single-electron Hamiltonian and Ĥint

describes electron-electron interaction. Here:

Ĥ0=
∑

injm

ss′σ

t(risn ; rjs
′

m )d̂†nisσ d̂mjs′σ +
Vb

2

∑

n

(n̂n1 − n̂n2), (1)

where d̂†nisσ and d̂nisσ are the creation and annihila-
tion operators of the electron with spin projection σ,
located at site n in the layer i (= 1, 2) in the sublat-

tice s (= A,B), and n̂ni =
∑

sσ d̂
†
nisσ d̂nisσ is the elec-

tron density at the unit cell n of layer i. For intralayer
hopping, only the nearest-neighbor term is included. Its
amplitude is −t, where t = 2.57 eV. The interlayer hop-
ping is parameterized as described in Refs. [11, 12], with
the largest interlayer hopping amplitude being equal to
t0 = 0.4 eV. The second term in Eq. (1) describes the
potential energy difference between layers due to the ap-
plied bias voltage Vb. Switching to the momentum rep-
resentation, one can introduce new single-particle opera-
tors d̂pGisσ = N−1/2

∑

n e−i(p+G)ri
n d̂nisσ. Here N is the

number of graphene unit cells in the sample in one layer,
the momentum p lies in the first Brillouin zone of the
superlattice, while G = m1G1 + m2G2 is the reciprocal
vector of the superlattice lying in the first Brillouin zone
of the ith layer. The number of such vectors G is equal
to Nsc for each graphene layer. Thus, Ĥ0 becomes

Ĥ0 =
∑

pσ

[

∑

G1G2

∑

ijss′

t̃ss
′

ij (p+G1;G1−G2)d̂
†
pG

1
isσ d̂pG

2
js′σ

+
Vb

2

∑

Gs

(

d̂†pG1sσ d̂pG1sσ − d̂†pG2sσ d̂pG2sσ

)

]

, (2)

t̃ss
′

ij (k;G)=
1

Nsc

∑′

nm

e−ik(ri
n
−rj

m
)e−iGrj

m t(risn ; rjs
′

m ) . (3)

The summation with prime
∑′

nm denotes that m runs
over sites inside the zeroth supercell, while n runs over
all sites in the sample.

The Hamiltonian (2) can be used to find the single-

electron spectrum E
(S)
p and eigenvectors Φ

(S)
pGis, where

S = 1, 2, . . . , 4Nsc labels 4Nsc single-electron bands.
The spectrum of (2) is well-known. Its part inside the
energy window −0.5t < E < 0.5t, calculated for m0 = 5,
r = 1 (θ ∼= 6.01◦), and Vb = 0.15t, is shown in Fig. 1.
When θc < θ < 60◦ − θc (θc ∼= 1.89◦ for the parame-
ters used), the low-energy spectrum consists of four Dirac
cones located in pairs at two Dirac points K1,2. Initially,
we retain only these four bands, discarding all other elec-
tron states. To label the four bands, we will use the
symbol ewµ (hwµ ) to denote the electron (hole) band of the
Dirac cone µ = ±1 at the Dirac point (valley) Kw, where
the valley index is w = 1, 2. When Vb > 0, the energies
of the ew+1 and hw+1 (ew−1 and hw−1) bands are shifted to
positive (negative) energies. Considering the momentum
p from Kw, we can approximate the electron energy as
Ee,h

pµw ≈ v∗F(µq
∗
F±|p|), where v∗F = v∗F(θ) is the renormal-

ized Fermi velocity of the tBLG, and q∗F ∝ Vb/v
∗
F is the

Fermi momentum. Both v∗F and q∗F are calculated numer-

ically at half-filling. Therefore, if êwkµσ (ĥwkµσ) denotes an
operator destroying an electron with momentum k and
spin projection σ in the band ewµ (hwµ ), the low-energy
Hamiltonian becomes

Ĥeff
0 =v∗F

∑

pµwσ

[

(|p|+µq∗F)ê
w†
pµσ ê

w
pµσ−(|p|−µq∗F)ĥ

w†
pµσ ĥ

w
pµσ

]

.

(4)
Consequently, two bands, ew−1 and hw+1, pass through the
Fermi energy (see Fig. 1) and form the Fermi surface
(Fermi lines). The Fermi lines may be approximated by
two circles |p| = q∗F around both Dirac points [30]. The
lines are identical for ew−1 and hw+1. In the presence of in-
teraction, a nested Fermi surface is unstable with respect
to the formation of excitonic order.
To discuss such excitonic order, we need to specify the

interaction Ĥint:

Ĥint=
1

2

∑

injm

ss′σσ′

d̂†nisσ d̂nisσUij(r
is
n − rjs

′

m )d̂†mjs′σ′ d̂mjs′σ′ . (5)

The choice of interaction potential Uij(r) significantly
affects the ordered-phase properties. Since the field-
induced holes and electrons inhabit different layers, they
interact most effectively via the screened Coulomb po-
tential [31, 32]. The commonly used Hubbard interac-
tion [20–22, 25, 33] is quite ineffective in our setting, and
we numerically verified [34] that the corresponding cor-
rections are weak. For quasiparticles in the same layer,
the Fourier transform of the screened Coulomb potential
Uii(r) is Uii(k) = vkV−1

c /(1+Πkvk). Here, Vc =
√
3a2/2

is the graphene unit cell area, the bare Coulomb potential
is vk = 2πe2/ǫ|k|, the permittivity of the substrate is ǫ,
and −Πk is the static polarization operator of electrons
in the bilayer. When the interacting electrons are in dif-
ferent layers, the corresponding matrix element becomes
U12(k) = vkV−1

c exp(−|k|d)/(1 + Πkvk).
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FIG. 1: (Left panel) Band structure calculated for a sample
with m0 = 5, r = 1 (θ ∼= 6.01◦); Vb = 0.15t/e. The bands eµ
and hµ are shown by bold curves. Vertical dashed lines cor-
respond to the Dirac points K1,2. Each vertical double-arrow
connects two bands forming the anomalous matrix elements
ηp±1σ . (Right panel) The Fermi surface, corresponding to the
band structure plotted on the left (solid red curves). A slight
trigonal warping of the Fermi lines is seen.

Once the interaction is specified, the low-energy pro-
jection of Ĥint becomes

Ĥeff
int =

1

2N
∑

pq

∑

µw

∑

σσ′

[

Aw
pqĥ

w†
pµσ ĥ

w
qµσ ê

w†
qµ̄σ′ ê

w
pµ̄σ′+

Bw
pqĥ

w†
pµσ ê

w
qµσ ĥ

w†
qµ̄σ′ ê

w
pµ̄σ′ + h.c.

]

, (6)

where µ̄ = −µ, and Aw
pq, B

w
pq are effective coupling con-

stants, obtained by projecting Ĥint in Eq. (5) on the low-
energy bands. The procedure is standard, but tedious,
and requires both analytical and numerical steps [34].
In (6) we take into account only electron-hole interac-
tions, because these are directly responsible for the gap.
Our numerical results demonstrate that, if the momenta
p and q lay in the w valley (that is, both p and q

are near the Dirac point Kw), then Aw
pq ≈ cos2[(ϕp −

ϕq)/2]U12(p−q) and Bw
pq ≈ sin2[(ϕp−ϕq)/2]U12(p−q),

where ϕp = arctan(py/px) is the polar angle correspond-
ing to p. The deviation from these equalities is larger, for
smaller θ. Numerical evidence further indicates that the
coupling of electron states with different valley indices
is negligible. This allows us to keep only the intravalley
interaction terms in Eq. (6).
Exciton order parameter.— The interaction (6) binds

electrons e and holes h into excitons. To describe the
exciton condensate we must choose a suitable order pa-
rameter. The well-studied AB bilayer, with its variety of
orders [15, 35–37] offers little guidance here: the AB bi-
layer has no Fermi surface, and its Hamiltonian possesses
a unique chiral structure. Likewise, the knowledge [25]
about tBLG ordered phases at low-θ is inapplicable: for
θ < θc the single-electron bands are very flat [1, 3, 11, 38],
and require a different approach. Of more relevance are
the studies of the AA bilayer [20–23, 33, 39], which has

an almost circular nested Fermi surface. With this in
mind we define the following symmetry-breaking expec-
tation values ηwpµσ = 〈ĥw†

pµσ ê
w
pµ̄σ̄〉, where σ̄ means ‘not

σ’. An order parameter 〈ĥw†
pµσ ê

w′

pµ̄σ̄〉, coupling valleys w
and w′, is not supported by our interaction if w 6= w′.
Thus, the valley index may be suppressed. This ordered
phase is the planar SDW. Its magnetic moments are lo-
calized on the links connecting atoms in different layers.
Since the nesting vector is zero, the SDW period coin-
cides with the superstructure periodicity. The magnetic
moments distribution depends on the interference of the
order parameters in different valleys, which presented for-
malism cannot capture. Finally, the charge-density-wave
order

∑

σ〈ĥw†
pµσ ê

w
pµ̄σ〉 is energetically unfavorable in com-

parison to the SDW one, as it can be seen from Hamil-
tonian (6). Using the η’s we can decouple Heff

int. The
resultant mean-field Hamiltonian becomes quadratic in ê

and ĥ. It can be expressed as ĤMF =
∑

pµ Ψ̂
†
pµHpµΨ̂pµ,

where Ψ̂pµ = (ĥpµ↑, êpµ̄↑, ĥpµ↓, êpµ̄↓)
T, and

Hpµ =









Eh
pµ 0 0 −∆∗

pµ↑

0 Ee
pµ −∆pµ↓ 0

0 −∆∗
pµ↓ Eh

pµ 0

−∆pµ↑ 0 0 Ee
pµ









. (7)

Here the order parameter is defined as ∆pµσ =
N−1

∑

q

[

Apqηqµσ +Bpqη
∗
qµ̄σ̄

]

. Minimizing the total
energy at zero temperature and at half-filling, we obtain
the system of equations for the order parameters:

∆pµ =
Vc

2

∫

d2q

(2π)2





Apq∆qµ
√

∆2
qµ + E2

qµ

+
Bpq∆qµ̄

√

∆2
qµ̄ + E2

qµ̄



, (8)

where we assume that ∆pµ↑ = ∆pµ↓ ≡ ∆pµ = ∆∗
pµ, the

integration is performed over the Brillouin zone of the su-
perlattice, and Eqµ = [Ee

qµ − Eh
qµ]/2. If ∆p+1 → 0, the

right-hand side of Eq. (8) acquires a logarithmic singu-
larity, implying that the studied instability is driven by
∆p+1. Its value at the Fermi surface gives us the energy
gap. As for ∆p−1, its role is to renormalize the strength
of the symmetry breaking and it cannot be neglected in
the numerical calculations.
Solving (8), several simplifications are made. First,

we approximate the Fermi surface by a circle of radius
q∗F. The functions Apq and Bpq are replaced by con-
stants Ā and B̄, obtained by averaging Apq and Bpq

over the Fermi surface. The p-dependence of ∆pµ is sim-
plified: ∆pµ = ∆µΘ(qΛ − |p − q∗F|), where qΛ > 0 is
the cutoff momentum of the interaction and Θ(q) is the
step-function. The cutoff value can be found [31, 32]
by the requirement U12(qΛ) = U12(0)/2. Assuming that
qΛd ≪ 1 (which is valid for Vb . t0 and e2/ǫvF . 1), we
derive qΛ ≈ 2παvFΠ0, where α = e2/ǫvF is the graphene
fine structure constant and vF = at

√
3/2 is the Fermi

velocity of single-layer graphene. Finally, since in the
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long-wavelength limit (|k| ≪ |b1,2|), the function Πk is
equal to the density of states (DOS) at the Fermi level:
Πk ≈ Π0 ≈ 4q∗F/(πv

∗
F), and qΛ = 8α(vF/v

∗
F)q

∗
F.

Approximate solution, weak interaction limit.— In the
weak interaction limit, α → 0, only the states with small
momenta q = |q| ≪ |G1,2| are important. For these

Eqµ ≈ v∗F(|q| − µq∗F) . (9)

In this regime, the region of integration in Eq. (8) be-
comes a ring or a circle centered at the Dirac point, de-
fined by q1 < |q| < q2, where q1 = max[0, q∗F − qΛ] and
q2 = q∗F + qΛ. Therefore, the system (8) becomes

∆µ =
1

2

q2
∫

q1

dq





qλA∆µ
√

∆2
µ + v∗2F (q − µq∗F)

2
(10)

+
qλB∆µ̄

√

∆2
µ̄ + v∗2F (q + µq∗F)

2



, µ = ±1 ,

where λA = VcĀ/(2π), λB = VcB̄/(2π). Assuming that
qλ ≪ q∗F and ∆µ ≪ Vb, we solve system (10) analytically:

∆+ ≈ 2vFq
∗
Fα exp{−1/Λ+ 4α∗}, ∆− =

B̄

Ā
∆+ , (11)

where α∗ = e2/(ǫv∗F) is the ‘renormalized α’ and Λ ≈
λAq

∗
F/v

∗
F. The solution (11) for ∆+ has a BCS-like struc-

ture, which dictates a high sensitivity of the gap ∆+ to
the effective interaction strength Ā.
Approximate solution, strong interaction limit.— The

solution (11) is valid when α ≪ 1. Estimates show, how-
ever, that for a suspended bilayer α ≈ 2.6. When α
increases, the cutoff qΛ can exceed the size of the super-
lattice Brillouin zone. In this case, we should take into
account more bands in the Hamiltonians (4) and (6),
and, consequently, introduce additional order parame-
ters ∆pµ. This makes the formalism quite involved. A
simpler approach is to neglect the fine structure of the
high-energy (|q| > |G1,2|) single-electron states and treat
them as if there is no hopping between the layers. Such
a layer decoupling is justified [40] if θ > θc. For example,
the high energy DOS of tBLG is well-approximated by
the single-layer DOS (see Fig. 7 of Ref. [41]). This sim-
plification allows to extend the upper integration limit
q2 in (10) to ∼ qΛ < |b1,2|. Note that in the interval
|G1|/(2

√
3) < q < qΛ, because of the decoupling, the ve-

locity v∗F in (10) must be replaced by vF. Finally, even at
large qΛ, we may study each valley K1,2 separately [34].
This is a consequence of the decoupling of the layers.
Results and Discussion.— We numerically solved the

system (10), valid in the weak-interaction limit. We
also solved its modified version suitable for the strong-
interaction regime. The computations were performed
for several superstructures with r = 1 in a wide range
of values for Vb and α. Major results of our study are

0.5 1.0 1.5 2.0
10-5

10-4

10-3

10-2

10-1

=3
.2

o

=3.9
o =5.1

o

=17.7
o

 

 

+/t

(a)

=7.3
o

3 6 9 12
10-6

10-5

10-4

10-3

10-2

0 0.1 0.2
0

4

8
 

 

+(V
b)/

+(0
.1

)

Vb/t

(b)

 

 

+/t

 (deg)

FIG. 2: (a) Solid curves show the gap ∆+ versus α for su-
perstructures with r = 1 and m0 = 2, 4, 6, 8, 10 (twist an-
gles θ ∼= 17.7, 7.3, 5.1, 3.9, 3.2 degrees) for Vb/t = 0.1. The
dashed curve corresponds to the decoupled (t0 = 0) graphene
layers. In this case, the function ∆+(α) is almost indepen-
dent of θ. (b) ∆+ versus θ calculated for Vb/t = 0.037 and
α = 1.044. The inset shows ∆+ versus Vb for α = 0.306 (solid
curve) and for α = 0.719 (dashed curve) calculated for the
superstructure m0 = 5, r = 1.

presented in Fig. 2, where ∆+ is plotted for different
model parameters. (We focus on ∆+, since it provides
the electron energy gap, a quantity of crucial importance
for the system properties.) The gap strongly (exponen-
tially) depends on the interaction strength for all super-
structures, see Fig. 2(a). The gap is appreciable, when
α & 1 ⇔ ǫ . 2.5 (note that the ratio ∆+/t ∼ 10−2

corresponds to ∆+ ∼ 300K). Thus, to observe the gap
at room temperatures [42], the permittivity of the sub-
strate should not be large. The data in Fig. 2(a) implies
that for any α the gap is larger for smaller twist angles.
This point is illustrated in Fig. 2(b), where ∆+ is plotted
versus θ for fixed α and Vb. We note that the band gap

increases by about four orders of magnitude, when the
twist angle changes from θ ∼= 17.7◦ to θ ∼= 3.2◦. Such a
strong enhancement can be explained by the reduction
of the Fermi velocity due to the interlayer hybridization.

The graph in the inset shows the gap versus the bias
voltage for weak and moderate α. This dependence is
linear at small Vb, in agreement with (11). Indeed, be-
cause of screening, the interaction parameter Ā is pro-
portional to 1/q∗F at weak bias; therefore, the dimension-
less parameter Λ ∼ Āq∗F is insensitive to Vb and only
the pre-exponential factor in (11) linearly depends on Vb.
At strong interaction, the function ∆+(Vb) can be non-
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monotonous for large bias voltages. Thus, our findings
demonstrate that the tBLG may serve as a system with a
tunable insulating gap. Recently, experimental evidence
in favor of such a gap was reported [13].

In conclusion, we demonstrated that biased tBLG can
become a magnetic semiconductor with tunable gap,
whose value, depending on parameters, can be as large
as several hundreds Kelvin. The gapful state is an exci-
ton insulator, accompanied by SDW order. The insulator
is stabilized due to perfect nesting of the field-generated
Fermi surface. These results have both fundamental and
applied significance.
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