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Elementary band representations are the fundamental building blocks of atomic limit band struc-
tures. They have the defining property that at partial filling they cannot be both gapped and trivial.
Here, we give two examples – one each in a symmorphic and a non-symmorphic space group – of
elementary band representations realized with an energy gap. In doing so, we explicitly construct
a counterexample to a claim by Michel and Zak that single-valued elementary band representations
in non-symmorphic space groups with time-reversal symmetry are connected. For each example, we
construct a topological invariant to explicitly demonstrate that the valence bands are non-trivial.
We discover a new topological invariant: a movable but unremovable Dirac cone in the “Wilson
Hamiltonian” and a bent-Z2 index.

The theory of topological quantum chemistry intro-
duced in Ref. 1 diagnoses topological phases based on
elementary band representations. A set of bands is topo-
logical if it lacks an “atomic limit” that obeys the crystal
symmetry (and time-reversal, if desired): formally, an
atomic limit exhibits a set of localized, symmetric Wan-
nier functions.[1–7] This definition includes all known
topological insulating phases.[8–18] We showed in Refs. 1
and 2 that each atomic limit defines a “band representa-
tion,” which is a representation of the full space group.
The irreducible representations (irreps) of the little group
at each point in the Brillouin zone are completely deter-
mined for each band representation.[19–21] However, the
little group irreps do not define the band representation:
two groups of bands can exhibit the same little group
irreps but differ by a Berry phase.[2, 22–24]

If a set of bands, separated by an energy gap from
all other bands, does not transform as a band represen-
tation, it does not have localized, symmetric Wannier
functions; consequently, it is topological.[1, 2] An “ele-
mentary” band representation (EBR) is not equivalent
to a sum of two band representations. It follows that
a disconnected (gapped) elementary band representation
must realize a set of topological bands.[1–3] Such discon-
nected EBRs will be the focus of this letter. All EBRs
and their irreps at high-symmetry points in the Bril-
louin zone can be found on the Bilbao Crystallographic
Server.[1, 25–30]

The theory of topological quantum chemistry also

brings to light the different types of trivial-to-topological
phase transitions, distinguished by how many symmetry-
distinct orbitals contribute to the topological bands. For
example, the Kane-Mele model of graphene[8] requires
only one type of symmetry-distinct orbital (the two spin-
ful pz orbitals per unit cell are related by the honeycomb
lattice symmetry), while the trivial-to-topological transi-
tion in HgTe[13] requires both s and p orbitals to create
a “band inversion.” These two types of topological insu-
lators differ in their atomic limit as the distance between
atoms is taken to infinity: in the atomic limit of graphene,
the band structure consists of a single flat and four-fold
degenerate band, corresponding to a single EBR. In con-
trast, in HgTe, the atomic limit will consist of two flat
bands, one each for the s and p orbitals, corresponding
to two distinct EBRs.

In this letter, we will focus on the graphene-like case:
topological insulators that derive from a single orbital
and its symmetry-related partners. In the language of
band representations, the conduction and valence bands
together transform as a single EBR; consequently, either
the conduction or valence bands (or both) lack an atomic
limit and are topological.[1–3]

We introduce models in a symmorphic and a non-
symmorphic space group. The symmorphic example de-
scribes px,y orbitals on the honeycomb lattice. Without
spin-orbit coupling (SOC), the band structure can be a
(gapped) topological crystalline insulator (TCI). With
infinitesimal SOC and time-reversal symmetry, the sys-
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tem exhibits a nontrivial Z2 index.
We were motivated to explore the non-symmorphic ex-

ample because, as part of their ground-breaking work on
the connectivity of energy bands, Michel and Zak con-
jectured that spinless EBRs in non-symmorphic space
groups cannot realize a gapped band structure.[31, 32] In
Ref 26, we explained where Michel and Zak’s proof fails.
Here, we pick a particular non-symmorphic space group,
P4232, and construct a tight-binding model to explicitly
show its gapped, topological nature. In doing so, we find
a novel feature: the two-dimensional “Wilson Hamilto-
nian” exhibits a topologically protected band crossing.

In each example, we derive a bulk topological invari-
ant. An essential tool is the “k‖-directed” Wilson loop,
which describes the parallel transport of an isolated set
of bands:[4, 17, 33–42]

W(k⊥,k0) ≡ Pei
∫ k0+2π

k0
dk‖A‖(k⊥,k‖), (1)

where P indicates that the integral is path-ordered and
A‖(k)ij = i〈ui(k)|∂k‖uj(k)〉 is a matrix whose rows and
columns correspond to each eigenstate in the isolated
set of bands. The eigenvalues of W are gauge invari-
ant and of the form eiθ(k⊥), independent of the “base
point,” k0.[40] A quantized invariant derived from the
Wilson loop is invariant under any deformation of the
Hamiltonian that preserves the gap in the spectrum.

Spinless TCI on the honeycomb lattice We start with
spinless px,y orbitals on the honeycomb lattice, described
by the nearest-neighbor Hamiltonian: [43]

H0
k =

(
0 hk
h†k 0

)
(2)

where non-zero blocks mix the A and B sublattices and

hk =
1

2

(
e−ik·δ1 + e−ik·δ2 + e−ik·δ3

)
(tσ + tπ)I

+
1

2

(
e−ik·δ1 − 1

2
e−ik·δ2 − 1

2
e−ik·δ3

)
(tσ − tπ)σz

+

√
3

4

(
e−ik·δ2 − e−ik·δ3

)
(tσ − tπ)σx (3)

The Pauli matrices, σx,y,z, act in the px,y subspace; tσ,π
parameterize σ and π bond strengths; and δ1,2,3 are the
nearest-neighbor vectors (see Fig 1a). Previously this
model with tπ = 0 was studied for its flat bands.[44, 45]
The spectrum of H0

k is shown in Fig 1b. The degeneracies
at K ≡ 2

3g1 + 1
3g2 and Γ are symmetry-required.[46]

To open a gap, we add the following next-nearest
neighbor hopping term, which preserves the crystal sym-
metries of the honeycomb lattice:[47]

H1
k = sin( 1

2k·e1) sin( 1
2k·e2) sin( 1

2k·(e1−e2))τz⊗σy, (4)

where the matrices τi act in the sublattice subspace. The
term in Eq. (4) changes the energy-ordering of the bands
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FIG. 1. (a) Lattice (e1,2) and reciprocal lattice (g1,2) ba-
sis vectors. The dotted arrows (δ1,2,3) indicate the vectors
between nearest neighbor sites. A and B indicate the sublat-
tices. (b) Spectrum of H0

k with tσ = 1, tπ = −.5 (c) Gapped
band structure of H0

k +xH1
k with tσ = .8, tπ = 1.0, x = .6 and

(d) the argument of its Wilson loop eigenvalues.

at K, while preserving the two-fold degeneracy. For large
enough |x|, H0

k + xH1
k can be gapped, as in Fig. 1c; see

Sec. S1A for a phase diagram.

The spectrum in Fig 1c represents a disconnected
EBR.[1, 2] We construct a non-trivial bulk topological
invariant from the g1-directed Wilson loop of the lower
two bands. Its eigenvalues are shown in Fig. 1d as a func-
tion of the base point. When the base point is Γ or M ,
the Wilson loop eigenvalues (−1 and +1, respectively[48])
are completely determined by the C2z eigenvalues[38, 42]
(the C2z operator is −τx⊗σ0.[49] ) This forces the “Wil-
son bands” to wind in opposite directions. The quantized
eigenvalues at Γ and M prevent the Wilson spectrum
from being smoothly deformed to flat, which indicates
that the valence bands are topologically nontrivial.

The Wilson loop winding requires that both occupied
bands of H0

k +xH1
k at Γ have the same C2z eigenvalue, η,

and that both occupied bands at M have the C2z eigen-
value −η. Consider the Wilson loop of three bands: the
two occupied bands and a third, trivial, band, not in
our model. If the C2z eigenvalues of the third band at
Γ and M are both equal to η, then the eigenvalues of
the three-band Wilson loop will not be quantized at M
and it will fail to wind. Thus, the topological invariant
is not stable to adding a third band to the projector (al-
though the winding of the projector onto two bands is
invariant under adding a third band as long as the gap
between the third band and the existing bands does not
close.) The existence of a topological invariant that de-
pends on the number of bands is reminiscent of the “Hopf
insulator.”[50]
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Spinful topological phases We now consider SOC.
Spinful px,y orbitals decompose into three irreps of the
site-symmetry group. Bands derived from these three
irreps transform as a sum of three EBRs,[1, 2] which
generically split into four sets of disconnected bands, as
in Figs 2a and 2b. At least one set of disconnected bands
is either an obstructed atomic limit – it can be adiabat-
ically deformed to a Hamiltonian comprised of orbitals
that reside at the center of the hexagon rather than the
corners – or a topological band that does not have any
atomic limit.[51]

If time-reversal symmetry is enforced, we can consider
the Z2 index. For small spin-conserving SOC that does
not invert the bands at Γ or M , the C2z eigenvalues in
the spinless phase determine the Z2 index of each set
of bands (conserving spin amounts to enforcing inver-
sion symmetry.) Our simple, but physically motivated,
model yields two phases, shown in Fig 2: either all three
or the first/third gaps are Z2 topological, while the mid-
dle gap is not; there is no phase in which all gaps are
Z2 trivial.[52] We show in Sec. S1C that only spin-
conserving SOC can open a gap in the spinless band
structure; hence, if non-spin-conserving SOC is present
and does not invert any bands, it will alter the band
structure but not change the Z2 index.

K M Γ

-2

-1

1

2
E

Γ

(a)

K M Γ

-3

-2

-1

1

2

3
E

Γ

(b)

π 2π
k

-2

-1

1

2
E

(c)

π 2π
k

-2

-1

1

2

E

1.05π 1.1π
k

-0.03

-0.02

-0.01

0.01

0.02

0.03
E

(d)

FIG. 2. Band structures with an onsite L · S term for (a,b)
periodic and (c,d) slab boundary conditions. This SOC term
preserves inversion symmetry, such that all bands remain dou-
bly degenerate, but is general enough to open all possible gaps
in the band structure. In (a) only the lowest and highest
bands have a nontrivial Z2 index and hence the slab bound-
ary conditions in (c) reveal edge states in all three gaps. In
(b) all four bands have a nontrivial Z2 index and hence the
slab boundary conditions in (d) reveal edge states in only the
upper and lower gaps. The inset in (d) resolves the avoided
crossing at E = 0.

Material realization The spinless semi-metallic model
H0

k consists of nearest-neighbor Slater-Koster[53] terms;
thus, it is widely applicable to two-dimensional planar
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FIG. 3. (a) Spectrum of Hk + H1
k with t1 = .2, t2 = .3, t3 =

.1, t4 = .08, t5 = .05, t6 = .02. Inset shows unit cell: or-
bitals on the blue atoms enter the Hamiltonian, while the
white/black atoms create a crystal field with the symmetry
of P4232. (b) Argument of the eigenvalues of the z-directed
Wilson matrix along the path M̄ − Γ̄ − M̄ ′ (blue dotted line
in inset); M̄ = (π, π), Γ̄ = (0, 0), M̄ ′ = (−π, π).

honeycomb systems. To exhibit the TCI phase, the next-
nearest neighbor term, H1

k, must be dominant in order to
open a gap. The relative strength of the hopping terms
varies with strain or buckling.

The non-trivial Z2 phases will be present whenever
SOC is large enough to open an observable gap, but not
so large to invert the bands at Γ andM . In particular, H0

k

with SOC describes bismuth grown on an SiC substrate,
consistent with the topological edge states reported in
Ref 54.

Non-symmorphic gapped EBR We now consider the
non-symmorphic simple cubic space group P4232, which
is generated by {C2x|0}, {C3,111|0} and {C2,110| 12

1
2

1
2}.

We also enforce time-reversal symmetry. We con-
sider atoms sitting at (0, 0, 0) and ( 1

2 ,
1
2 ,

1
2 ) (inset to

Fig 3a), which together comprise the 2a Wyckoff posi-
tion, each with spinless dz2 and dx2−y2 orbitals, which
together form a time-reversal symmetric irrep of the site-
symmetry group.[55, 56] Since the orbitals transform as
an irrep of a maximal Wyckoff position, any band struc-
ture derived from these orbitals transforms as a time-
reversal invariant EBR. It follows from Ref 2 that if
the band structure is gapped, it contains topological
bands. Here, we explicitly construct a gapped Hamilto-
nian and a nontrivial bulk topological invariant, violat-
ing the conjecture[31, 32] that a single set of symmetry-
related orbitals in a non-symmorphic space group always
yields a gapless band structure.

We consider the following Hamiltonian, which respects
all space group symmetries and time-reversal:[57]

Hk = t1f1(k)τx ⊗ σ0 + t2f2(k)τy ⊗ σ0+

+ t3(g1(k)τz ⊗ σz + g2(k)τz ⊗ σx), (5)

where f1(k)=
∑
i cos(k·δi), f2(k)=

∑
i sin(k·δi), g1(k) =

cos kx − cos ky, g2(k) = (cos kx + cos ky − 2 cos kz) /
√

3
and δ1,2,3,4 are vectors to nearest neighbors, shown in
Fig 3a. The band structure is doubly-degenerate and
gapped when t1,2,3 6= 0. To eliminate the extra degen-
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eracies, we add the symmetry-preserving term

H1
k = t4f1(k)τy ⊗ σy + t5τ0 ⊗ (g2(k)σz − g1(k)σx)

+ t6g3(k)τz ⊗ σ0, (6)

where

g3(k) = cos(2kx) cos(ky)−cos(2ky) cos(kx) + perm. (7)

and ‘+ perm’ indicates terms obtained by permuting
kx → ky → kz. The spectrum of Hk + H1

k is shown
in Fig 3a. Since Hk is fully gapped when t1,2,3 6= 0,
Hk + H1

k is gapped when t4,5,6 are small compared to
t1,2,3.

This gapped phase realizes a disconnected and time-
reversal symmetric EBR; thus, it contains topological
bands. We diagnose the topological phase by the winding
of its z-directed Wilson loop along the bent path shown
in Fig 3b. This is a time-reversal symmetric and non-
symmorphic generalization of the “bent Chern number”
introduced in Ref 58. Two features are necessary for
this loop to wind: first, the Wilson loop eigenvalues are
pinned to ±1 at Γ̄ and M̄ , and, second, there are pro-
tected band crossings in the Wilson spectrum along the
|kx| = |ky| lines. Combined, these features prevent the
Wilson bands from being smoothly deformable to flat
bands; hence, the phase is topological.

We now explain the origin of these features: first, C2x

symmetry forces the eigenvalues ofW(Γ̄,0) andW(M̄,0) to

be real, while the {C2,110| 12
1
2

1
2} screw symmetry forces

them to come in pairs (λ,−λ∗).[59] This combination
pins the eigenvalues of W(kx,ky,0) to be ±1 at Γ̄ and M̄ .

The Wilson band crossing is subtle: the {C2,110| 12
1
2

1
2}

screw symmetry requires the eigenvalues of W(k,k,0)

to come in pairs (λ,−λ∗). Combined with the anti-
unitary symmetry T {C2,110| 12

1
2

1
2}
−1C2z, which leaves

points (k, k, kz) invariant, the Wilson matrix must take
the form W(k,k,0) = ieiax(k)σx+iay(k)σy , where, impor-
tantly, ax(k) ∝ ay(k) (alternately, the symmetries per-
mit the eigenvalues ofW(k,k,0) to be fixed to ±1; see Sec.
S3B.) Then degeneracies of the Wilson eigenvalues, which
occur when ax(k) = ay(k) = 0, are not fine-tuned, since
the symmetry forced ax(k) ∝ ay(k). Since the eigenval-
ues of W(k,k,0) at k = 0 and k = π are fixed to +1 and
−1, an odd number of linear degeneracies between Γ̄ and
M̄ cannot be removed without closing the bulk band gap.
Thus, the parity of the number of linear degeneracies is
a topological invariant.

The band crossing forms a Dirac cone in the two-
dimensional “Wilson Hamiltonian.”[40] The Dirac point
is revealed by the Berry phase, w, acquired by an eigen-
state of W(kx,ky,0) as it traverses the path γ around the
Dirac point. The Berry phase of Wilson loop eigenstates
was introduced in Ref. 41. Since w is quantized to ±1
(see Sec. S4), it constitutes a topological invariant. In
our model, for several values of parameters, we have nu-
merically computed the nontrivial value, w = −1.

When SOC is present, the spinful dz2 and dx2−y2 or-
bitals transform as spin- 3

2 orbitals, which induce an eight-
band time-reversal symmetric EBR.[27] When the EBR
is gapped, the valence (or conduction) bands must be
topological.

Weak symmetry indicators In both the spinless TCI
on the honeycomb lattice and the non-symmorphic
gapped EBR, the valence bands are topological, but have
the property that the irreps at high-symmetry points can
be written as a “difference” of the irreps in two other
EBRs.[60] Because the irreps can be written as a differ-
ence, classification schemes[61] that treat the little group
irreps as a vector space will identify the valence bands
as trivial, even though they lack an atomic limit. How-
ever, unless an energy gap closes to the valence bands,
the winding of the Wilson loop in both examples provides
a robust and quantized topological invariant that is, in
principle, physically observable.[42, 62, 63]

This distinction warrants a refined characterization
of topological crystalline bands based on whether their
topological nature can be deduced by their little group
irreps. We label the symmetry properties of topological
bands as strong if their little group irreps are not equal to
a linear combination of little group irreps corresponding
to EBRs and weak if their little group irreps are equal to
a difference (but not a sum) of irreps in EBRs. Strong
symmetry properties implies a stable topological index;
however, the converse is not true: for example, bands
with a nontrivial Z2 index under time-reversal symme-
try can be strong[10] or weak.[1] This usage of weak and
strong symmetry is different than the current distinction
between weak and strong topological insulators.[10] It is
more suitable for the refined classification of topological
insulators with crystal symmetries.

Conclusions We have constructed tight-binding mod-
els to realize the insulating phases of two gapped EBRs.
We explicitly showed that the valence bands have a non-
trivial topological invariant. In doing so, we found a new
topological invariant in a non-symmorphic space group:
a Dirac cone in the Wilson loop spectrum and a Wilson
loop that winds along a bent path. This motivates fur-
ther study of the gapped EBRs in other non-symmorphic
space groups. In addition, we introduced the notion of a
weak symmetry indicator. We postpone a general inves-
tigation of the symmetry properties of gapped EBRs to
future work.
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de Physique Théorique et Hautes Energies. The work
of MGV was supported by FIS2016-75862-P. The work
of LE and MIA was supported by the Government of
the Basque Country (project IT779-13) and the Spanish
Ministry of Economy and Competitiveness and FEDER
funds (project MAT2015-66441-P). BAB acknowledges



5

the support of the NSF EAGER Award DMR – 1643312,
ONR - N00014-14-1-0330, NSF-MRSEC DMR-1420541,
ARO MURI W911NF-12-1-0461, the Department of
Energy de-sc0016239, the Simons Investigator Award,
Packard Foundation and the Schmidt Fund for Innova-
tive Research.

∗ Permanent Address: Department of Physics, Princeton
University, Princeton, New Jersey 08544, USA

[1] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory,
Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig,
Nature 547, 298 (2017), arXiv:1703.02050 [cond-mat].

[2] J. Cano, B. Bradlyn, Z. Wang, L. Elcoro, M. G.
Vergniory, C. Felser, M. I. Aroyo, and B. A. Bernevig,
Phys. Rev. B 97, 035139 (2018), arXiv:1709.01935 [cond-
mat].

[3] H. C. Po, H. Watanabe, and A. Vishwanath, (2017),
arXiv:1709.06551.

[4] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83,
035108 (2011).

[5] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 85,
115415 (2012).

[6] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and
D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).

[7] N. Read, Phys. Rev. B 95, 115309 (2017).
[8] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
[9] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306

(2007).
[10] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[11] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,

106803 (2007).
[12] R. Roy, Phys. Rev. B 79, 195322 (2009).
[13] B. A. Bernevig, T. L. Hughes, and

S.-C. Zhang, Science 314, 1757 (2006),
http://science.sciencemag.org/content/314/5806/1757.full.pdf.

[14] J. C. Y. Teo, L. Fu, and C. L. Kane, Phys. Rev. B 78,
045426 (2008).

[15] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
[16] K. Shiozaki, M. Sato, and K. Gomi, Phys. Rev. B 95,

235425 (2017).
[17] B. J. Wieder, B. Bradlyn, Z. Wang, J. Cano, Y. Kim,

H.-S. D. Kim, A. M. Rappe, C. L. Kane, and B. A.
Bernevig, (2017), arXiv:1705.01617.

[18] H. Song, S.-J. Huang, L. Fu, and M. Hermele, Phys.
Rev. X 7, 011020 (2017).

[19] J. Zak, Phys. Rev. Lett. 45, 1025 (1980).
[20] J. Zak, Phys. Rev. B 26, 3010 (1982).
[21] H. Bacry, L. Michel, and J. Zak, “Symmetry and classi-

fication of energy bands in crystals,” in Group theoretical
methods in Physics: Proceedings of the XVI International
Colloquium Held at Varna, Bulgaria, June 15–20 1987
(Springer Berlin Heidelberg, 1988) p. 289.

[22] H. Bacry, L. Michel, and J. Zak, Phys. Rev. Lett. 61,
1005 (1988).

[23] H. Bacry, Commun. Math. Phys. 153, 359 (1993).
[24] L. Michel and J. Zak, EPL (Europhysics Letters) 18, 239

(1992).
[25] B. Bradlyn, L. Elcoro, M. G. Vergniory, J. Cano,

Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig,

Phys. Rev. B 97, 035138 (2018), arXiv:1709.01937.
[26] M. G. Vergniory, L. Elcoro, Z. Wang, J. Cano, C. Felser,

M. I. Aroyo, B. A. Bernevig, and B. Bradlyn, Phys. Rev.
E 96, 023310 (2017), arXiv:1706.08529.

[27] L. Elcoro, B. Bradlyn, Z. Wang, M. G. Vergniory,
J. Cano, C. Felser, B. A. Bernevig, D. Orobengoa,
G. de la Flor, and M. I. Aroyo, Journal of Applied Crys-
tallography 50, 1457 (2017), arXiv:1706.09272.

[28] M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci,
G. de la Flor, and A. Kirov, Bulg. Chem. Commun.
43(2), 183 (2011).

[29] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova,
S. Ivantchev, G. Madariaga, A. Kirov, and H. Won-
dratschek, Z. Krist. 221, 15 (2006).

[30] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato,
and H. Wondratschek, Acta Cryst. A62, 115 (2006).

[31] L. Michel and J. Zak, Phys. Rev. B 59, 5998 (1999).
[32] L. Michel and J. Zak, Phys. Rep. 341, 377 (2001).
[33] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
[34] L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).
[35] S. Ryu, C. Mudry, H. Obuse, and A. Furusaki, New

Journal of Physics 12, 065005 (2010).
[36] R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys.

Rev. B 84, 075119 (2011).
[37] M. Taherinejad, K. F. Garrity, and D. Vanderbilt, Phys-

ical Review B 89, 115102 (2014).
[38] A. Alexandradinata, X. Dai, and B. A. Bernevig, Phys-

ical Review B 89, 155114 (2014).
[39] Z. Wang, A. Alexandradinata, R. J. Cava, and B. A.

Bernevig, Nature 532, 189 (2016).
[40] A. Alexandradinata, Z. Wang, and B. A. Bernevig, Phys.

Rev. X 6, 021008 (2016).
[41] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes,

Science 357, 61 (2017), arXiv:1611.07987.
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