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Abstract

The effects of kinetic whistler-wave instabilities on the runaway-electron (RE) avalanche is in-

vestigated. With parameters from DIII-D experiments, we show that RE scattering from excited

whistler waves can explain several poorly understood experimental results. We find an enhance-

ment of RE avalanche for low density and high electric field, but for high density and low electric

field the scattering can suppress the avalanche and raise the threshold electric field, bringing the

present model much closer to observations. The excitation of kinetic instabilities and the scattering

of resonant electrons are calculated self-consistently using a quasilinear model and local approx-

imation. We also explain the observed fast growth of electron cyclotron emission (ECE) signals

and excitation of very low-frequency whistler modes observed in the quiescent RE experiments

at DIII-D. Simulations using ITER parameters show that by controlling the background thermal

plasma density and temperature, the plasma waves can also be excited spontaneously in tokamak

disruptions and the avalanche generation of runaway electrons may be suppressed.
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Introduction.- In a plasma, the collisional force decreases with increasing electron velocity

and a strong electric field force can overcome the collisional damping, accelerating high

energy electrons to relativistic speeds. Such electrons are referred to as “runaway electrons”

(REs). In tokamaks, REs have attracted a lot of attention due to their deleterious effects

on the device during disruption events[1, 2]. Studies of RE dynamics reveal that knock-on

collisions can lead to avalanche multiplication of the RE population[3], and calculations

show that the threshold electric field for this scenario, the Connor-Hastie field ECH[4], is

much smaller than the typical induced electric field in disruptions. Consequently, a strong

RE avalanche effect could convert a large fraction of Ohmic current to RE current during

disruptions. Aside from tokamak plasmas, RE avalanche is also important in other areas,

such as lightning formation during thunderstorms[5].

Quiescent runaway electron experiments in well-controlled scenarios (called flattop) with

low electron density have been conducted in several tokamaks[6–8]. The RE density and en-

ergy distributions have been inferred from radiation signals, including hard X-rays (HXR),

gamma rays and electron cyclotron emission (ECE). An important finding in these experi-

ments is that the value of the threshold electric field for the RE population to transition from

growth to decay is not the expected ECH[7, 9] but 5-10 times higher. This discrepancy with

the theory indicates the presence of anomalous RE loss mechanisms, and numerical simula-

tions have indicated the importance of radiative energy losses, including synchrotron[10, 11]

and bremsstrahlung[12, 13]. However, theoretical calculations including these effects raise

the threshold electric field to about 2 ECH, which is still much smaller than that observed.

In recent DIII-D experiments[14], the gamma-ray imaging (GRI) shows that the RE density

decreases in the low energy regime while E remains several times ECH, which differs from

numerical simulation results including radiative losses. In addition, during both flattop[15]

and the RE plateau in disruption experiments[16], strong ECE from REs was observed.

These observations are suggestive of strong pitch angle scattering in the RE population at

low energy, which could enhance radiative losses.

In this Letter, we demonstrate that a self-consistent kinetic treatment which includes the

whistler-wave instability driven by the highly anisotropic RE momentum-space distribution

provides a conclusive resolution of the observed discrepancy between theory and experiment.

New simulations presented in this paper produce a threshold of 6.4ECH, which is very close

to observations.
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Previous studies of kinetic instabilities associated with REs[17] have addressed the insta-

bility criterion[18], the diffusion effect on the electron distribution[19–22], and the convective

aspect of the instabilities[23]. A detailed study containing also the avalanche effect and ra-

diation damping is, however, missing. In the present work, we present a recently developed

numerical model to study the evolution of both the runaway electron distribution and the

wave energy spectrum self-consistently, including the avalanche source and the radiation

reaction. The model includes the wave-particle interaction within the quasilinear approx-

imation. Our numerical analysis of DIII-D flattop experiments and ITER post-disruption

scenarios reveals that the whistler waves can enhance the avalanche for large E/ECH (low

density), but suppress the avalanche for small E/ECH (high density). The results show an

increase of the critical electric field and a rapid increase in the ECE from REs, also seen in

the experiments.

Simulation framework.- The whistler wave belongs to the fast wave branch of the plasma

wave dispersion relation. In this work, the frequency and the polarization of the whistler

waves for every (k, θ) (with θ = arccos k‖/k) are calculated using the cold plasma dielectric

tensor. We also calculate the collisional damping rate according to the electron-ion collisional

frequency[23].

The evolution of the electron distribution function f in momentum space is advanced

through the kinetic equation. The coordinates for momentum space are (p, ξ), where p is

the momentum normalized to mc (m is the electron mass and c is the speed of light), and

ξ = p‖/p. The kinetic equation we solve is[24]

∂f

∂t
+
eE‖
mc

(
ξ
∂f

∂p
+

1− ξ2

p

∂f

∂ξ

)
+ C [f ] +

∂

∂p
· (Fradf) +D [f ] = SA [f ] , (1)

with E‖ the parallel electric field, C[. . . ] the collision operator[25, 26]. Frad is the synchrotron

radiation reaction force term[11]. D [. . . ] is the diffusion operator from the excited waves.

SA [. . . ] is the source term for the avalanche[2, 27].

Given the distribution function, we can obtain the growth (or damping) rate Γ of every

mode, using[23][28]

Γ(k, θ) =
ω2
pe

D

∫
d3p

n=∞∑
n=−∞

Qnπδ(ω − k‖vξ − nωce/γ)(p2/γ)L̂f , (2)

where

Qn =

[
nωce

γk⊥v
Jn(k⊥ρ) + EzξJn(k⊥ρ) + iEy

√
1− ξ2J ′n(k⊥ρ)

]2

, (3)
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L̂ =
1

p

∂

∂p
− 1

p2

nωce/γ − ω(1− ξ2)

ωξ

∂

∂ξ
, (4)

Here ωpe and ωce are the plasma frequency and electron cyclotron frequency (we choose

ωce < 0), Jn is the nth order Bessel function, v is the particle velocity, γ is the relativistic

factor, and ρ = mp
√

1− ξ2/ωce is the Larmor radius. D is from Eq. (21) in [23]. Ey and

Ez are wave polarization normalized to Ex. f is normalized so that
∫
p2dpdξf = 1.

The wave energy E(k, θ) then evolves as

dE(k, θ)

dt
= 2Γ(k, θ)E(k, θ) +K(k, θ), (5)

where K(k, θ) represents the fluctuation electromagnetic field energy from radiation, which

provides the initial amplitudes of the modes[29]. K can be calculated as

K(k, θ) =
ω2
pe

D

∫
d3p

n=∞∑
n=−∞

Qnπδ(ω − k‖vξ − nωce/γ)mv2f. (6)

The diffusion of resonant electrons can be calculated using a quasilinear diffusion model[30],

D[f ] =
e2

2D

∞∑
n=−∞

∫
d3k L̂

[
p⊥δ(ω − k‖vξ − nωce/γ)E(k, θ)Qnp⊥L̂f

]
. (7)

Note that in Eqs. (2), (6) and (7), the wave-particle interaction happens only when the

resonance condition is satisfied: ω − k‖vξ = nωce/γ. This includes Cherenkov resonance

(n = 0), normal Doppler resonance (n < 0) and anomalous Doppler resonance (n > 0).

For anomalous Doppler resonance, the resonant momentum p is a decaying function of ω

for a fixed θ, thus the low energy electron will resonate with high frequency waves and

vice versa. For Cherenkov resonance, p is a non-monotonic function of k and θ, so for

low frequency whistler waves (LFWWs) and high frequency whistler waves (HFWWs), the

resonance regions overlap.

The numerical representation of f and E is adjusted, guided by the anticipated shape of

the solution. For f , we use finite element method with 1000 elements in p and 50 elements

in ξ. For E , we use a mesh with 50 points in θ and 160 points in k. For every mode,

we calculate a line integral for f to obtain Γ and K according to Eq. (2)(6). For the

diffusion operator, we use linear interpolation to get the wave energy required by Eq. (7)

for every quadrature point in the f mesh. In the calculation of Eqs. (2) and (7), we only

include n = 0,±1 assuming they are the most dominant resonances. The timestep is chosen
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according to ∆t = 1/Γmax, where Γmax is the maximum value of Γ for all the modes. For

every timestep, the evolution of E is calculated by integrating Eq. (5) for ∆t.

To better validate against experiments, we also developed an ECE synthetic diagnostic

code to calculate the ECE radiation power[29, 31, 32]. Note that in the current model

we only have the electron distribution in 2D momentum space, thus to calculate the ECE

signals, we assume that the electron distribution containing a runaway tail is homogeneous

in space near the core from −0.5a to 0.5a (a is the minor radius), and outside this region,

the electron distribution is a Maxwellian distribution with a specified temperature profile.

Simulation of flattop RE experiment scenarios.- We now use the model to simulate a DIII-

D flattop experiment[14], which has strong RE generation due to the avalanche process. Note

that a typical RE discharge consists of two stages. In stage I, the plasma density is very

low and the parallel electric field supporting the Ohmic current is sufficient to accelerate a

RE tail. When the REs reach a critical intensity, an asynchronous trigger begins the RE

dissipation stage, in which the electron density is varied by gas puffing. The parameters we

use in simulation are close to the numbers from the tokamak core diagnostic. For stage I,

ne = 0.6 × 1019m−3, Te = 1.3keV, and B = 1.45T. E‖ = 0.055V/m, which is about 9ECH.

For stage II, we increase the density to ne = 0.8 × 1019, by adding a Maxwellian part to f

from the last timestep of stage I. We also decrease the electric field to E = 0.045V/m, so

E/ECH becomes 5.5. The effective ion charge is set to be Zeff = 2 [14].

The simulation result of stage I is summarized in Fig. 1. Before 0.5s, the RE tail is

formed through Dreicer generation (Fig. 1 (c)). In this case all the modes are stable. Then

as the RE tail extends to p = 15, the LFWWs (from 1GHz to 5GHz, as shown in Fig. 1(d))

first get excited, due to the anomalous Doppler resonance with electrons at p‖ > 15mc. This

gives rise to strong pitch angle scattering for high energy REs[17, 19] (as shown below in

Fig. 2(a)).

After 1.6s, the HFWWs also get excited as shown in Fig. 1 (e) (the wave close to the

spectrum right boundary which is the resonance cone). These waves resonate with lower

energy electrons (1.5 < p/mc < 4) through anomalous Doppler resonance. The result of

the excitation, as shown in Fig. 2(b), is that the low energy REs can be scattered to very

large pitch angle. This effect also leads to the fast growth of the ECE signals. Calculation

of ECE weight function[32] shows that electrons in the low energy regime with large pitch

angle are the most efficient at generating ECE power. This explains why the ECE signals
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FIG. 1. (a) Growth of RE density with time, with wave diffusion (solid) and without (dashed).

(b) ECE signals of second and third core ωce, with wave diffusion (solid) and without (dashed).

(c) Evolution of f integrated over the pitch angle. (d) Whistler wave energy spectrum for t = 1.0s.

Right boundary is the whistler wave resonance cone. (e) Whistler wave energy spectrum for

t = 3.0s.

only start to grow after the HFWWs get excited. We also observe that the higher frequency

ECE signal surpasses the lower frequency one, which agrees with experiments[15].

As shown in Fig. 1 (a), after the HFWWs are excited, the avalanche growth rate increases.

This effect is caused by diffusion of electrons in momentum space through Cherenkov reso-

nance. Using the resonance condition, we find that the Cherenkov resonance region for the

excited waves is about 0.4 < v‖/c < 0.6, which is close to the runaway-loss separatrix[33] in

this case (0.3 < v‖/c < 0.5 for ξ = 1). Note that the electron distribution function close to

the separatrix satisfies ∂f/∂p‖ < 0, so diffusion makes low energy electrons move to higher

energy, and make them more prone to “run away”.

We now look at stage II, which is shown in Fig. 3. According to the previous theories[11,

34], the electric field is still larger than the critical electric field, so the runaway population

6



0 5 10 15 20 25
0

5

10

p
(m
c)

0 5 10 15 20 25
p (mc)

0

5

10

p
(m
c)

-9.5

-8.8

-8.2

-7.6

-7.0

-6.4

-5.8

-5.2

-4.6

-4.0

(b)

(a)

FIG. 2. (a) Value of log10 f in p‖ − p⊥ space at t = 1.0s. (b) Value of log10 f in at t = 3.0s.

would grow if this were the extent of the model. This is confirmed in our simulation without

wave diffusion, as shown by the dashed line in Fig. 3 (a). However, with the wave diffusion,

the RE population actually starts to decay. Examination of the evolution of f (Fig. 3 (c))

reveals that this is caused by the loss of the REs in the lower energy regime, which is in

agreement with recent findings in DIII-D[14]. The whistler wave spectrum and the shape of

RE distribution function in stage II is similar to those of the later phase of stage I.
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FIG. 3. (a) Evolution of RE density, with wave diffusion (solid) and without (dashed). (b) ECE

signals with wave diffusion (solid) and without (dashed). (c) Evolution of f integrated over pitch

angle.

The fact that the RE population decays because of wave diffusion seemingly contradicts
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the results from stage I. This is because the diffusion effects from HFWWs can scatter REs

to large pitch angles in the low energy regime through anomalous Doppler resonance, which

become less susceptible to the electric force acceleration and can more easily lose energy.

This mechanism provides a new channel for RE loss. In addition, in stage II the runaway-

loss separatrix is at 0.5 < v‖/c < 0.7, due to the reduction of E/ECH, which does not

overlaps with the Cherenkov resonance region. So the diffusion across the separatrix is less

significant.

The effect of wave diffusion in momentum space is further illustrated in Fig. 4 (a), where

we show the directions of flux in momentum space calculated from the kinetic equation.

In the high energy regime, a vortex structure is formed (10 < p‖ < 15) due to LFWWs.

The location of the vortex is in a much lower energy than that from radiation forces[35].

This vortex can hinder REs from going into the higher energy, resulting in a bump-on-tail

distribution. On the other hand, in the low energy regime (−5 < p‖ < 3) electron flux is

stochastic since the dynamics are dominated by diffusion rather than advection. The strong

diffusion in this region comes from both LFWWs and HFWWs through all three types of

resonances. Electrons entering this region can be diffused from low pitch angle to high pitch

angle, losing energy to the waves, and finally returning to the thermal population.
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FIG. 4. (a) Electron flux in momentum space at t = 4.0s. (b) RE density growth (decay) rate

as a function of E/ECH. The red dots are from the simulations with wave diffusion, and the red

line is a linear regression. The green dots are from the simulations without wave diffusion, and the

green dashed line is the growth rate calculated from [3], with critical electric field Ec = 1.82ECH

from [27]

The decay of RE density in stage II indicates that the excitation of whistler waves can

increase the critical electric field. Scanning ne keeping other parameters fixed shows that the
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new critical electric field is about E/ECH = 6.4 (Fig. 4 (b)). This value is much larger than

the previous predictions with radiation reaction but without kinetic instabilities[36] (Green

line in Fig. 4 (b)), and is closer to the experimental observation[37]. For E/ECH . 6.4,

the avalanche is suppressed by whistler waves due to the anomalous Doppler resonance

scattering. But for E/ECH � 6.4, the avalanche is enhanced because of Cherenkov resonance

diffusion across separatrix.

We also use our numerical model to study the excitation of recently observed very low

frequency whistler waves[38]. By examining the whistler wave spectrum in stage II, we find

that a branch of whistler modes with frequency between 100MHz to 200MHz and k⊥ � k‖ are

excited in our simulation. Unlike previously discussed waves, these waves are mainly driven

by the Cherenkov resonance. This is because the low-energy REs scattered by HFWWs

can accumulate in a region of momentum space, which can cause an unstable bump-on-tail

distribution function. This is illustrated in Fig. 4 (a), where we see electrons on the left

side of the vortex (p‖ ∼ 5mc, p⊥ > 8mc) losing p‖ due to interaction with waves.

Note that in the local analysis of kinetic instabilities presented so far, we didn’t take into

account for the finite spatial extent of excited waves, termed the convective effect[23, 39].

To understand it, we use a ray tracing code GENRAY[40] to study the propagation of the

whistler waves. We find that, for both LFWWs and HFWWs excited in our simulations,

the rays will have trajectories bouncing back and forth in the poloidal plane, and the values

of n‖ and n⊥ will stay close to their initial values when the wave packet propagates near the

core[41]. This means that the resonance conditions of these waves will not be qualitatively

different from that obtained from local analysis, but the growth rates may be overestimated

by a few times.

In addition to flattop experiments, we also study the kinetic instabilities in disruptions.

However, we find that for typical post-disruption parameters of ITER, kinetic instabilities

can hardly be excited due to strong collisional damping at low temperature (∼ 5eV). On

the other hand, if we use a lower density (ne = 2× 1019m−3) and raise the electron temper-

ature to about 50eV, we find that both LFWWs and HFWWs can be excited. This density

and temperature thresholds are consistent with previous estimations[23, 39]. With kinetic

instabilities, we find the avalanche growth can be enhanced for large E/ECH but suppressed

for small E/ECH, and the critical electric field is larger than what classical theory predicts.

Note that in disruption experiments with possible higher temperature[16], signals of kinetic
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instabilities have been observed. This suggests that in order to excite whistler waves and

mitigate the avalanche, it may be beneficial to reduce the thermal electron density by in-

jecting low-Z particles, and increase the thermal plasma temperature using external heating

techniques. However, for post-disruption scenarios the presented work on the effect of the

kinetic instabilities is preliminary due to the lack of orbit effect of electrons and convective

effects of waves, and a more dedicated and systematic study should be performed in the

future.

Summary.- To conclude, with the help of a new simulation model, we have advanced our

understanding of the interactions of kinetic instabilities and RE avalanche. We find that

for both flattop and post-disruption cases, the excited kinetic instabilities can enhance the

avalanche growth for large E/ECH but suppress it for low E/ECH. The RE distribution

function in momentum space, taking into account wave diffusion, differs significantly from

the classical runaway electron tail, prompting a qualitative revision of earlier theoretical

studies. Using this model, we successfully explain several phenomena in DIII-D flattop RE

experiments after gas puffing, including 1) the increase of the critical electric field, 2) the

decaying of RE density in the low energy regime, 3) the ECE from runaway electrons, 4)

the observation of very low frequency whistler waves. These results suggest the possibility

of controlling RE avalanche through kinetic instabilities, including both self-generation and

external wave-launching[42]. The simulation model can be improved by including radial

transport of REs due to stochastic magnetic fields, and the pitch angle scattering due to

impurities[43].
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[20] A. Kómár, G. I. Pokol, and T. Fülöp, J. Phys.: Conf. Ser. 401, 012012 (2012).
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