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In 1992 a puzzling transition was discovered in simulations of randomly coupled limit-cycle oscilla-
tors. This so-called volcano transition has resisted analysis ever since. It was originally conjectured
to mark the emergence of an oscillator glass, but here we show it need not. We introduce and solve
a simpler model with a qualitatively identical volcano transition and find that its supercritical state
is not glassy. We discuss the implications for the original model and suggest experimental systems
in which a volcano transition and oscillator glass may appear.

INTRODUCTION

Large systems of attractively coupled limit-cycle
oscillators can show synchronization transitions
analogous to ferromagnetic phase transitions [1, 2].
These transitions have been observed in chemical
systems [3] and are predicted for arrays of lasers [4–
6], biological oscillators [1], Josephson junctions [7],
and optomechanical systems [8]. The analogy to fer-
romagnetism led Daido [9, 10] to conjecture that if
the purely attractive couplings were replaced by a
frustrated mix of attractive and repulsive couplings,
oscillator arrays could potentially behave like spin
glasses [9–12]. So far, however, only a few counter-
parts of the phenomena observed in spin glasses have
been seen in oscillator arrays [13]. Finding, charac-
terizing, and even defining a true “oscillator glass”
remains controversial [9, 10, 13–20].
The search for oscillator glass began with a nat-

ural model: N ≫ 1 phase oscillators with random
symmetric Gaussian couplings as in the Sherrington-
Kirkpatrick spin-glass model [21]. Simulations re-
vealed a change in the model’s distribution of com-
plex local fields as the variance of the Gaussian cou-
plings was increased. At a critical variance, the dis-
tribution switched from being concave down at the
origin to concave up, thus forming a volcano-like
surface and defining the “volcano” transition [10].
Daido suggested this transition might also signal the
onset of an oscillator glass. Further evidence was
provided by the numerical observation of slow (al-
gebraic rather than exponential) relaxation from an
initially synchronous state to an incoherent state.
To explain these results analytically, later studies
sought similar phenomena in more tractable models
[13, 18–20, 22], but so far the volcano transition and
the glassy state have remained elusive.
In this Letter we present a model with a solv-

able volcano transition. It uses a coupling matrix
whose rank is controlled by a parameter K. In the
low-rank regime 2 ≤ K ≪ log2 N the model’s dy-
namics are non-glassy above threshold. Thus the

volcano transition is not indicative of an oscillator
glass; in the model studied here it merely signals a
synchronization transition in the presence of frus-
tration. Unfortunately our analysis does not extend
to the high-rank regime K = O(N) of more direct
relevance to Daido’s results [10]. For now that case
remains out of reach. Whether a true oscillator glass
exists in this or some other regime thus remains an
open question.
Following Daido [10], our model consists of cou-

pled phase oscillators. Oscillator j couples with
strength Jjk to oscillator k via the sine of their phase
difference. The governing equations are

θ̇j = ωj +

N
∑

k=1

Jjk sin (θk − θj) (1)

for j = 1, . . . , N . Here θj denotes the phase of os-
cillator j and ωj is its natural frequency, selected
at random from a given probability distribution.
Instead of the Gaussian frequencies and couplings
studied in Ref. [10], for the sake of solvability we con-
sider Lorentzian-distributed frequencies with density

g(ω) =
1

π(1 + ω2)

and define the couplings as follows. Given an even
integer K > 0 and a coupling scale factor J ≥ 0, let

Jjk =
J

N

K
∑

m=1

(−1)mu(j)
m u(k)

m . (2)

Here, for each oscillator j the interaction vector

(u
(j)
1 , . . . , u

(j)
K ) is a random binary vector of lengthK

with each entry independently being ±1 with equal
probability. Notice that the diagonal of Jjk will al-
ways be 0 (since it is an alternating sum of 1’s), and
Jjk = Jkj . In other respects the entries of the matrix
are independent random variables [23]. Because of
the presence of both positive and negative coupling,
this model induces frustration in the oscillator pop-
ulation. In the limit of large N the parameter K
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FIG. 1: Radial distribution of local fields. Each
curve represents the averaged density over 500
simulations of Eq. (1), using N = 250, K = 4,

fourth-order Runge-Kutta integration with a step
size of 0.01, 1000 transient steps, 2000 recorded
steps, and uniformly random initial phases.

equals the rank of the coupling matrix Jjk. Fur-
thermore, if we fix K ≡ N and let N get large, the
off-diagonal entries converge to normal random vari-
ables with a standard deviation of J/

√
N . So when

K = N ≫ 1, our construction approximates Daido’s
original Gaussian couplings.
To show numerically that our model has a volcano

transition, we compute its complex local fields [10]

Pj = rje
iφj :=

N
∑

k=1

Jjke
iθk ,

for j = 1, . . . , N . Equation (1) then becomes

θ̇j = ωj + rj sin (φj − θj) .

By keeping track of the Pj over time, we obtain a dis-
tribution of their magnitudes rj for each realization
of ω and Jjk. Figure 1 averages these distributions
over many realizations. As J increases from 1.5 to
2.5, the distribution changes from concave down at
the origin to concave up and volcano-like. At a crit-
ical Jc, the origin no longer attracts the maximum
density. This Jc defines the volcano transition.
Figure 2 illustrates how the individual oscillator

phases θj behave on either side of the transition.
For J < Jc the system is incoherent [Fig. 2(a)]. The
phases of the oscillators are uniformly distributed
and bear no relation to the coupling strength Jjk or
the phase φk of the complex local field [Fig. 2(b)].
In contrast, for J > Jc the oscillators with small
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FIG. 2: Oscillator phase distributions below and
above the volcano transition. In (a) and (b), J = 1;
in (c) and (d), J = 3. Each panel shows results for

simulations of N = 2000 and K = 6; other
parameters as in Fig. 1. (a) Below the volcano

transition, the system is incoherent. (b) Density of
θj − φk, indicating an oscillator’s phase relative to
that of the local field angle, plotted against the
associated coupling strength Jjk, normalized and
averaged across all k. Darker shades represent

higher density. The uniform vertical stripes show
that when J = 1 the local field has negligible
influence on oscillator phases. (c) Above the

volcano transition, phase-locked clusters appear.
(d) Dark horizontal bands at θj − φk = 0 and ±π

indicate tendency of oscillators to align or
anti-align to local field phases, depending on the

sign of Jjk.

|ωj| form phase-coherent clusters [Fig. 2(c)]. Fig-
ure 2(d) suggests that this partial synchronization
is induced by the local fields: if oscillator j couples
positively (attractively) to oscillator k, then oscilla-
tor j tends to align with the kth local field, whereas
if they are negatively (repulsively) coupled, then os-
cillator j tends to anti-align with the local field. In
some realizations we have also observed clustering at
phase differences other than 0 and π, for moderate
values of Jjk.

Turning now to the analytical results, we exam-
ine Eqs. (1) and (2) in the continuum limit N → ∞
with K held fixed. Using an Eulerian description,
we replace our discrete system of oscillators with a
continuous fluid moving around the unit circle. Its
state is described by a density f(θ, ω, u, t) of oscilla-
tors with phase θ, natural frequency ω, and interac-
tion vector u. In this framework the dynamics are
given by a continuity equation ft+(fν)θ = 0, where
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the subscripts denote partial differentiation, ν rep-
resents the velocity field on the circle given by the
continuum limit of Eq. (1),

ν(θ, ω, u, t) = ω + 〈J(u, u′) sin(θ′ − θ)〉, (3)

and 〈·〉 denotes integration using the time-dependent
measure f(θ′, ω′, u′, t)dθ′g(ω′)dω′ρ(u′)du′. The cou-
pling term J(u, u′) in Eq. (3) plays the role of Jjk in
Eq. (2). It is given by

J(u, u′) := J
K
∑

m=1

(−1)mumu′

m.

As before, u and u′ are random interaction vectors of
length K, all of whose entries are ±1 with probabil-
ity 1/2 each. Thus the probability of any particular
vector is 2−K . The associated term in the measure
is ρ(u′) = 2−K

∑

v δ(u
′ − v), where the sum runs

over all the equally likely v ∈ {±1}K. Similarly, the
continuum limit of the local field is

P (u, t) = 〈J(u, u′)eiθ
′〉.

Inserting P in Eq. (3) gives

ν(θ, ω, u, t) = ω +
1

2i

[

e−iθP (u, t)− c.c.
]

.

Having derived the continuum model, we reduce
it with the Ott-Antonsen ansatz [24–27], a tech-
nique that yields the exact long-term dynamics of
Kuramoto oscillator models with sinusoidal coupling
and Lorentzian frequencies. Following the standard
procedure we seek solutions of the form

f(θ, ω, u, t) =
1

2π

[

1 +
∞
∑

n=1

α(ω, u, t)neinθ + c.c.

]

and define a(u, t) := α(−i, u, t). We find [23]

ȧ(u, t) = −a(u, t) +
P ∗(u, t)− a(u, t)2P (u, t)

2
(4)

where

P (u, t) =

∫

J(u, u′)a∗(u′, t)ρ(u′)du′

=
J

2K

∑

u′

K
∑

m=1

(−1)mumu′

ma∗(u′, t).

Finally, by replacing P in Eq. (4) with this sum, we
get a closed set of 2K ordinary differential equations
for the a(u, t), one for each possible choice of u.
Equation (4) has rich dynamics, but for our pur-

poses it suffices to analyze the stability of its trivial

fixed point, a(u, t) = 0 for all u and t, because this
state corresponds to the incoherent state of Eq. (1).
The volcano transition occurs precisely when this
state goes unstable. Thus, to calculate Jc we lin-
earize Eq. (4) about a ≡ 0 and determine when one
of its eigenvalues is 0. The Jacobian is

− I +
J

2K+1
A. (5)

Here I is the 2K × 2K identity matrix and

Auv =

K
∑

m=1

(−1)mumvm

where the entries of A have been conveniently in-
dexed by binary strings u, v ∈ {±1}K. The eigen-
values of A can be found explicitly [23]. To do so
we write down the eigenvectors (which we guessed
by generalizing from small examples) and then read
off the eigenvalues. For each integer 1 ≤ n ≤ K
and each binary string v ∈ {±1}K, define a vec-

tor ζ(n) ∈ R
2K whose vth entry is ζ

(n)
v = vn. One

can check that the set of all K such vectors is or-
thogonal and, by using the evenness of K, that
Aζ(n) = (−1)n2Kζ(n). Moreover, given any η per-
pendicular to all the ζ(n), one finds Aη = 0. There-
fore, A has exactly three distinct eigenvalues: +2K

with multiplicity K/2, −2K with multiplicity K/2,
and 0 with multiplicity 2K − K. Consequently the
Jacobian (5) has three distinct eigenvalues, with the
largest always being −1 + J/2. The conclusion is
that the incoherent state for the continuum model
loses stability at

Jc = 2. (6)

This result holds for any even value of K.
The next question is whether Jc = 2 gives a good

approximation to Jc when N is finite. To anticipate
the answer, recall that the continuum model reduces
to the 2K-dimensional system (4). For the finite-N
system (1) to have any chance of behaving like a
continuous fluid of oscillators, we need it to have
many oscillators per u, and hence to have N ≫ 2K .
To test these ideas we simulate the finite-N sys-

tem and estimate Jc carefully. To pinpoint the vol-
cano transition we first compute the one-dimensional
(1D) distribution of local field magnitudes rj ≥ 0
and fit it to the sum of two normal distributions,
with one centered at µ and the other at −µ, and
both with variance σ2. In other words, we approxi-
mate the 1D density of local field magnitudes by

h(r) =
2√
2πσ2

exp

(−µ2 − r2

2σ2

)

cosh
(µr

σ2

)

,



4

25 75 125 175 225 275

N

4.5

4

3.5

3

2.5

2

Jc

K = 2

K = 4

K = 8

Normal entries

FIG. 3: Critical value Jc versus N and K. Each
value of Jc was estimated by using a bisection
method on the value of M+1M−1 to achieve an
accuracy of . 0.02. For each J we sample Jjk at

least 100 times, simulate Eq. (1), evaluate
M+1M−1, and keep track of the running standard
deviation of these products. If the current value of
M+1M−1 is more than 1.5 standard deviations
from 1.4694, the bisection continues; otherwise
further simulations are run, up to a maximum of
105 simulations. Each simulation consists of 1000
transient steps followed by 2000 recorded steps of a
fourth-order Runge Kutta integration with a step

size of 0.01, with initial phases all set to 0.

for r ≥ 0. To obtain the full 2D distribution of the
Pj ’s, we impose azimuthal symmetry by rotating and
rescaling the 1D density above.
The functional form of h(r) allows us to identify

its convexity at the origin. It is concave down when
γ := µ2/σ2 < 1 and concave up when γ > 1. To
measure γ numerically, we use the method of mo-
ments on the 2D distribution and find [23] that the
product of the first and negative first moments is

M+1M−1 =
π

2

1 + γ

[e−γ/2 +
√

πγ/2Erf(
√

γ/2)]2
.

The left hand side can be numerically estimated
by aggregating moments from multiple simulations,
along with an appropriate estimate of an error on its
total. The right hand side can be proven to imply
that h(r) is concave down at the origin (and there-
fore J < Jc) if and only if M+1M−1 & 1.4694. Thus
by measuring these two moments we can use a bi-
section algorithm to zero in on Jc.
Figure 3 shows that when K is small, Jc = 2 be-

comes an increasingly good estimate as N gets large.
For comparison we also computed Jc for a Gaussian
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FIG. 4: Log-log plot for the decay of the order
parameter Z(t). Each curve is the average of 750
numerical integrations of Eq. (1) for N = 5000

oscillators starting from the in-phase state (θj = 0
for all j) and run for 1000 steps with a step size of

0.01. Solid curves show coupled systems with
J = 10; dashed curves show uncoupled systems
with J = 0 for which the order parameter decays
exponentially: Z(t) = e−t. (a) Low-rank regime:

K ≪ log2(N). For K = 2, Z(t) decays
exponentially down to the noise floor. Exponential

decay is expected in this regime because the
dynamics of Eq. (1) are well approximated by the
low-dimensional system (4). (b) High-rank regime:
K = N = 5000. When K = O(N) and J > Jc, the
relaxation of Z slows markedly, resembling the

algebraic decay in glass.

coupling model in which Jjk is a random symmet-
ric matrix with normally distributed entries having
mean zero and variance J2/N . As noted earlier, our
coupling matrix (2) converges to such a Gaussian
matrix when K = N ≫ 1, but our analytical ap-
proach does not extend to this large-K regime. So
although the value of Jc for Gaussian coupling de-
creases as N gets large, we cannot predict whether
Jc asymptotically approaches 2 or not.
A proposed signature feature of oscillator

glasses [10, 13–16] is nonexponential relaxation of
the order parameter

Z(t) :=

N
∑

k=1

eiθk(t).

Figure 4 plots the decay of the order parameter for
our model. In the low-rank regime K ≪ log2 N
to which our continuum theory applies, Fig. 4(a)
shows that Z decays exponentially fast. This is to be
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expected, given that the dynamics reduce to a low-
dimensional set of ordinary differential equations (4)
in this regime. So the dynamics are not glassy here,
even above the volcano transition.

However, outside the low-rank regime there is
some indication that the model can exhibit a glassy
state. Figure 4(b) shows that when K = N ≫ 1, the
order parameter Z(t) decays roughly algebraically
for sufficiently large J . This finding aligns with re-
sults from Daido’s Gaussian coupling model, which
has been claimed (controversially) to have algebraic
decay [10, 14–16]. Understanding the nature of this
decay, in both our model and Daido’s, remains an
open problem. Other aspects of the relationship
between the two models need further investigation.
Our model has tunable rank, while Daido’s model
always has full rank. At low rank, the volcano tran-
sition in our model produces conspicuous phase clus-
ters, which never occur in Daido’s high-rank model.
In the high-K regime of our model, a glassy state
seems to occur [23], much like that seen in Daido’s
model. So presumably our model has a second
transition. Its existence, nature, and connection to
Daido’s transition remain unclear.

An important future direction is the search for
oscillator glasses in the lab and in nature. One
promising experimental setup is an array of photo-
sensitive chemical oscillators coupled through a pro-
grammable spatial light modulator, as used to create
spiral wave chimeras [28]. But we speculate that os-
cillator glasses may already exist in nature. Given
that they would not show any obvious macroscopic
signatures such as collective rhythmicity, they may
have escaped notice. There may even be a functional
benefit to enforcing incoherence in certain situations.
For instance, although snakes shed their skin in a
synchronized molt, humans do not. Perhaps in cases
like this, evolution has selected for glassy states to
prevent pathological synchrony.
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