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We study control of high-order harmonic generation (HHG) driven by time-delayed, few-cycle ω
and 2ω counter-rotating mid-IR pulses. Our numerical and analytical study shows that the time
delay between the two-color pulses allows control of the harmonic positions, both those allowed by
angular momentum conservation and those seemingly forbidden by it. Moreover, the helicity of any
particular harmonic is tunable from left- to right-circular without changing the driving pulse helicity.
The highest HHG yield occurs for a time delay comparable to the fundamental period T = 2π/ω.

High-order harmonic generation (HHG) in a laser field13

composed of two counter-rotating, circularly-polarized14

laser beams with frequencies ω and 2ω was pioneered15

in Refs. [1, 2]. Even though neither circularly-polarized16

field supports harmonic generation on its own, combin-17

ing them in a counter-rotating configuration leads to18

very efficient harmonic emission because ionized elec-19

trons undergo field-driven oscillations that return them20

to the parent ion. This field configuration offers a robust21

method to generate extreme ultraviolet light with high22

and tunable ellipticity (see, e.g., Refs. [1–16]), enabling23

table-top studies of chiral-sensitive light-matter interac-24

tions in both gas and condensed phase [6, 8, 10, 17–21].25

For counter-rotating bicircular driving pulses, the an-26

gular momentum selection rules in spherically symmetric27

media dictate that the allowed harmonics must have or-28

ders 3N + 1 and 3N + 2, while the 3N–harmonics are29

forbidden for a long bicircular laser pulse. Orders 3N+130

(respectively 3N+2) correspond to the net absorption of31

N + 1 (N) ω–photons and N (N + 1) 2ω–photons. Re-32

emission of the absorbed photons as a harmonic occurs33

by radiative recombination to the initial ground state [4],34

with the emission co-rotating with the ω– (2ω–) field. Or-35

ders 3N correspond to net absorption of N 2ω–photons36

and N ω–photons, so that the excited electron state has37

the same parity as the initial state. Thus, recombination38

by harmonic emission in this case is forbidden.39

In this Letter we show how these simple rules are mod-40

ified when time-delayed, few-cycle driving pulses are em-41

ployed. Our theoretical results, obtained both analyti-42

cally and numerically by solving the 3D time-dependent43

Schrödinger equation (TDSE), are for laser pulses with44

fundamental wavelength λ = 2πc/ω = 1.6 µm and inten-45

sity 1014 W/cm2. First, we show that for certain time46

delays between the two driving pulses, the harmonic spec-47

tra may be dominated by the “forbidden” 3N orders with48

nearly linear polarization. Second, for any given emission49

frequency we show that one can tune the helicity of the50

emitted light from nearly circular (right or left) to linear51

without changing the helicity of the driving laser pulses52

but by simply tuning the two-color time delay. Third,53

our theoretical analysis of harmonic emission driven by54

two few-cycle, time-delayed pulses shows the surprising55

result that the HHG yield is largest for nonzero time de-56

lays. Unintuitively, we find the HHG yield increases by57

an order of magnitude when the two pulses are substan-58

tially delayed and relate this phenomenon to the strong59

dependence of tunneling ionization by a bicircular pulse60

on the time delay. Fourth, even when the two driving61

pulses barely overlap, electrons liberated by a leading62

2ω-pulse can be driven back to the core by the trailing63

ω-pulse. The different impacts of the ω and 2ω fields on64

the electron dynamics leads to asymmetric dependence65

of the harmonic emission on the two-pulse delay time.66

To exclude any DC components, our bicircular field67

F(t) is defined via an integral of the vector potentialA(t):68

∫ t

A(τ)dτ = R(t), R(t) = R1(t) +R2(t− T ), (1)

Ri =
cF

ω2
i

e
−2 ln 2 t2

τ2

i (ex cosωit+ ηiey sinωit) , i = 1, 2

where A(t) and F(t) = −∂A(t)/(c∂t) can be found by69

differentiation (here c is the speed of light), F is the field70

strength, ω1 = ω, ω2 = 2ω, ηi is the ellipticity of the71

ith component (η1 = −η2 = 1), and τi = 2πNi/ω is the72

duration of the ith pulse (full width at half-maximum in73

the intensity), which is measured by the number of cycles74

Ni of the fundamental field. Finally, T is the time delay75

between the two pulses, with negative T corresponding76

to the 2ω-pulse arriving earlier.77

The TDSE was solved numerically for the one-electron
potential [expressed in atomic units (a.u.)],

U(r) = −
Q(r)

r
= −

1

r

[
tanh(r/a) + (r/b)sech2(r/a)

]
,



2

where a = 0.3 and b = 0.461, using the method described78

in Refs. [22, 23]. This potential provides a good approxi-79

mation for the hydrogenic spectrum and smooths the sin-80

gularity at the origin. This is advantageous for obtaining81

converged numerical simulations for this wavelength and82

intensity. However, since numerical simulations become83

very time-consuming for long wavelengths, an analytical84

model approach becomes increasingly necessary.85

The analytical theory takes advantage of the tunnelling86

interaction regime in mid-IR fields. In general, the har-87

monic response can be described in terms of quantum88

trajectories that obey the classical equations of motion89

but leave the atom at complex ionization times t̃′j and90

return at complex recombination times t̃j , where j la-91

bels the trajectory (see, e.g., Refs. [24–26]). In the tun-92

nelling regime, where the imaginary part of t̃′j is small,93

γ = Imωt̃′j ≪ 1, one can express the emission at fre-94

quency Ω via real ionization (t′j) and return (tj) times.95

These times obey the following equations [27]:96

K′

j · K̇
′

j +∆′

j = 0, K′

j = A(t′j)/c+ p(t′j , tj), (2a)

K2
j +∆j = 2(Ω− Ip), Kj = A(tj)/c+ p(t′j , tj),(2b)

p(t′j , tj) = −

∫ tj

t′
j

A(t)dt/[c(tj − t′j)],

where Ip is the ionization potential, and K̇′
j ≡ ∂K′

j/∂t
′
j.97

The quantum corrections in Eq. (2), ∆′
j and ∆j , account98

for the complex-valued parts of the quantum trajectory99

and are given by the expressions:100

∆′

j = −
1

6

(
κj

Fj

)2 ...
K′2

j , ∆j =

(
κj

Fj

)2 ∂2K′
j
2

∂t′j∂tj
,

where

κj =
√
κ2 +K′2

j , Fj =

√
K̈′2

j , κ =
√
2Ip,

and K̈′2
j ,

...
K′2

j are second and third derivatives of K′2
j101

in t′j , respectively. Neglecting the quantum corrections,102

Eq. (2a) ensures that at t′j the electron has minimal ki-103

netic energy, and Eq. (2b) ensures that the energy gained104

is converted into a photon of energy Ω upon radiative re-105

combination to the initial bound state with energy −Ip.106

For each trajectory j, the contribution dj to the total107

induced dipole at a frequency Ω can be written in the108

factorized form,109

dj = drec(Ω)P (tj)Wje
iSjP (t′j)Ij(t

′

j). (3)

In Eq. (3), the ionization amplitude, Ij(t
′
j), describes the110

tunneling step of HHG [28] in the adiabatic approxima-111

tion (see, e.g., Ref. [29]); the propagation factor, Wj , is112

Wj =

[
∆t

3/2
j

√
Kj · K̇j

]−1

, (4)

where ∆tj = tj−t′j and K̇j ≡ ∂Kj/∂tj; the exact recom-113

bination dipole is drec(Ω) = kjfrec(Ω) (kj = Kj/|Kj|),114

10
−7

10
−6

10
−5

10
−4

         

H
H

G
Y

 (
a

rb
.u

.) (a)(a)

−1

−0.5

 0

 0.5

 1

 72  84  96  108  120  132  144  156  168

 D
C

P
, 

ξ

Frequency Ratio, Ω/ω 

(b)(b)

Figure 1. Comparison of TDSE results (thin black lines) with
results of the analytical adiabatic approach (thin red lines)
for the HHG spectral yield (HHGY) (top) and harmonic de-
gree of circular polarization (DCP) ξ (bottom) for a counter-
rotating ω − 2ω bicircular field (1) with fundamental wave-
length λ ≡ 2πc/ω = 1.6 µm. Calculations were done for the
H atom for zero time delay (T = 0) between two-color 3-
cycle pulses (N1 = N2 = 3), each having a peak field strength
F = 0.0534 a.u. (or an intensity I = 1014 W/cm2).

calculated for the real-valued electron momentum Kj at115

the real-valued return time tj ; and the phase Sj is116

Sj = Ωtj −

∫ tj

t′
j

{
1

2

[
p(t′j , tj) +A(ξ)

]2
+ Ip

}
dξ. (5)

Finally, the factors P (t′j), P (tj) account for ground state117

depletion at the ionization and recombination times,118

P (t) = exp

(
−
1

2

∫ t

−∞

Γ(|F(t′)|)dt′
)
, (6)

where Γ(|F(t)|) is the tunnelling rate in the instantaneous119

electric field |F(t)|. Since the peak fields may approach120

the barrier suppression field Fb = κ4/(16Z), we use for Γ121

the empirical formula of Ref. [30], which differs from the122

standard tunneling formula of Smirnov and Chibisov [31]123

by a factor exp[−β(Z2/Ip)(F/κ
3)], where β = 5.6 is a124

fitting parameter and Z = 1 is the core charge.125

The numerical TDSE results and the analytic theory126

results for the harmonic spectrum and the degree of cir-127

cular polarization for T = 0 are compared in Figs. 1(a,b),128

demonstrating excellent agreement for the higher energy129

parts of the HHG spectra. Discrepancies are only found130

for low harmonics with Ω < up = F 2/(4ω2) (not shown131

in Fig. 1), i.e., for very short trajectories, where the adi-132

abatic three-step picture appears to fail.133

Note that the harmonic spectrum in Fig. 1(a) does134

not show the usual spectral structure characteristic of135

an ω − 2ω counter-rotating bicircular field, with allowed136

harmonic pairs 3N + 1 and 3N + 2 and missing (forbid-137

den) 3N harmonics for each integer N . Instead, we see138

an oscillation pattern typical of the interference of two139

emission bursts, suggesting a simple means to control140

both the spectra and the ellipticities of the harmonics.141

The short duration of our two-color, counter-rotating142

laser pulses results in a kind of ionization gating that fa-143
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Figure 2. Time-delay control of the HHG spectrum: (a) har-
monic yield; (b) degree of circular polarization ξ. The spec-
trum contains almost exclusively linearly-polarized “forbid-
den” 3N harmonic (see H114, H117, H120) and an “allowed”
3N +1 harmonic (H130). Results are for the H atom and the
bicircular field (1) with intensity I = 1014 W/cm2 for each
component, N1 = N2 = 2, T = −2π/ω, and λ = 1.6 µm.

vors only two ionization trajectories for harmonic emis-144

sion (i.e., only two partial dj contribute significantly).145

Consequently, a model of two emitting dipoles, discussed146

below, is suitable for the physical interpretation of our147

results. Let a harmonic frequency Ω be generated by two148

dipoles, d1e
−iΩt and d2e

−i(Ωt+Φ), where d1 and d2 are149

real vectors and Φ is their relative phase. While each150

individual dipole emits linearly polarized light, their su-151

perposition does not. If α is the physical angle between152

the two dipoles, then the degree of circular polarization,153

ξ, of the emitted radiation is given by (see Ref. [32]):154

ξ = −
sinα sinΦ

δ + cosα cosΦ
, δ =

d21 + d22
2d1d2

. (7)

Equation (7) shows that ξ can be varied in the range155

(−1/δ; 1/δ) by varying the relative phase Φ between the156

two dipoles, with full control of ξ available for δ ≃ 1.157

For a bicircular driving field, the relative phase Φ is158

controlled by changing the time delay between the two159

driving colors, which controls the electron trajectories re-160

sponsible for a given emission frequency.161

The oscillation patterns in Fig. 1(b) confirm this anal-162

ysis. The phase between the two dipoles in Eq. (7) is163

Φ = S1 − S2, and α is the angle between the vectors K1164

and K2 – the electron velocities for the two dominant165

recombination events. For the bicircular field, α ≃ 120◦166

or 2π/3. For δ = 1, circularly polarized light is emit-167

ted for Φ = π ± α, with “+” for ξ = +1 and “−” for168

ξ = −1. Since Φ is of order F 2/ω3 ≫ 1, it results in a169

rapid oscillation pattern in ξ(Ω) between the maximum170

and minimum values, as seen in Fig. 1(b). On the other171

hand, for α ≃ 2π/3, the maxima of the total harmonic172

yield occur for Φ = S1−S2 = π+2πν (for integer ν), i.e.,173

the interference peaks in the total yield are offset from174

the maxima in ξ, as shown in Figs. 1 and 2.175

This simple physical model indicates the possibility of176

controlling the HHG spectrum and the harmonic elliptic-177

ities: e.g., two dominant emission bursts separated by ap-178

proximately one-third of an optical cycle may yield a re-179

gion of the HHG spectrum with single peaks at 3Nω [33],180

in stark contrast with the usual HHG spectrum for a bi-181

circular field. Using the analytic approach, this result is182

shown in Fig. 2 for a time delay between the two pulses183

of T = −T . However, as the time between successive184

emission bursts is only approximately T/3, we observe185

some shifts in the positions of interference maxima and186

degrees of circular polarization. Thus for a pulsed bicir-187

cular field, 3Nω peaks with nearly linear polarization can188

be observed only in particular ranges of harmonic ener-189

gies (e.g., 114 ≤ Ω/ω ≤ 120 in Fig. 2); also, “allowed”190

3N +1 harmonics with linear (instead of circular) polar-191

ization can be observed (e.g., Ω/ω = 130 in Fig. 2).192

For any Ω (or return electron energy E = Ω− Ip), the193

analytic theory can trace the main contributing closed194

electron trajectories given by Eq. (2). They are described195

by the classical equations of motion, except that the real-196

valued ionization and recombination times include quan-197

tum corrections. In Fig. 3 we present the dependence of198

the electron return energy E in units of up = F 2/4ω2,199

ε = E/up, as a function of the ionization time, t′j , and200

the travel time, ∆tj . The gradually changing colors along201

the steeply-sloped curves in Fig. 3 indicate the relative202

contribution of the classical trajectory at each t′j , which is203

governed by the ionization factor Ij . (The dependence of204

the ionization factor on the recombination time is given205

in Ref. [33].) In contrast to the case of linear polariza-206

tion [see Fig. 3(f)], for a time-delayed few-cycle, bicircular207

field there are two pronounced ionization bursts at times208

t′j governed by the time delay [see Figs. 3(a)-(e)]. More-209

over, the dominant trajectories for time-delayed few-cycle210

counter-rotating bicircular fields (see Fig. 3 of Ref. [33])211

are markedly different from those for a linearly polarized212

pulse or for a long bicircular field [2].213

For a large negative delay (−3T ) equal to the duration214

of the fundamental pulse [see Fig. 3(a)], one might expect215

significantly reduced harmonic emission. Unexpectedly,216

there is surprisingly strong emission from very long tra-217

jectories returning to the atom with high energy ε ≈ 2218

after nearly 3 optical cycles, while short trajectories con-219

tribute for energies ε < 1.5. For small negative delays220

and all positive delays, very long trajectories do not con-221

tribute; trajectories with travel time less than an optical222

period determine the shape and cutoff of the HHG spec-223

trum. For zero delay, the HHG yield is about an order224

of magnitude smaller than for negative delays [33].225

There is thus no symmetry between large positive and226

negative delays: for large positive delays the long trajec-227

tories remain suppressed and the harmonic spectra are228

dominated by the short trajectories, which start and fin-229

ish during the time the two pulses overlap. This differ-230

ence becomes clear upon noting that both the drift ve-231

locity and the lateral displacement of trajectories in the232

fundamental field are larger than those in the second har-233

monic field: the displacement in the ω–pulse is about four234

times larger than in the 2ω–pulse. Thus, for large time235

delays returning to the origin is possible when the delayed236



4

ε

t'j (in units of T)

1

2

−4 −3 −2 −1

(a)

∆ tj (in units of T)
 0  1  2  3  4  5

10
−5

10
−4

10
−3

ε

t'j (in units of T)

1

2

3

4

5

6

−2 −1

(b)

∆ tj (in units of T)
 0  1  2  3  4

10
−5

10
−4

10
−3

ε

t'j (in units of T)

1

2

3

4

5

6

−1  0  1

(c)

∆ tj (in units of T)
 0  1  2  3

10
−5

10
−4

10
−3

ε

t'j (in units of T)

1

2

3

4

5

6

 0  1  2

(d)

∆ tj (in units of T)
 0  1

10
−5

10
−4

10
−3

ε

t'j (in units of T)

1

2

3

 2  3

(e)

∆ tj (in units of T)
 0  1

10
−5

10
−4

10
−3

ε

t'j (in units of T)

1

2

3

4

−2 −1  0  1

(f)

∆ tj (in units of T)
 0  1  2  3

10
−5

10
−4

10
−3

Figure 3. Dependence of the scaled return energy, ε = E/up, where up = F 2/(4ω2), on the jth trajectory’s ionization time,
t′j , and travel time, ∆tj , for five time delays T (in units of T ≡ 2π/ω) between the two driving pulses: (a) T = −3T ; (b)
T = −T ; (c) T = 0; (d) T = T ; (e) T = 3T . For reference, panel (f) shows the spectrum for a single-color linearly-polarized
field. Results are for the H atom and laser parameters I = 1014 W/cm2, λ = 1.6 µm, N1 = 3, and N2 = 2. The color scale
shows the relative contributions of the dipoles, ∝ |dj |
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Figure 4. Color-coded emission intensities (a) and degree of
circular polarization ξ (b) vs. two-color pulse time delay, T ,
and emission energy, Ω. The laser parameters are the same as
in Fig. 3. Discontinuities in panels (a,b) occur when the sec-
ond order time-derivative of the classical action goes through
zero, Kj · K̇j = 0, leading to the inapplicability of Eq.(3).
Results for N = 87 [solid (red) lines] are plotted in Fig. 5.

ω-pulse drives back the electron initially launched by the237

2ω–pulse, but not vice versa. The trajectory analysis238

shows that positive time delays allow for easier control239

of emission properties, since only a few trajectories (with240

travel times less than a period T ) contribute.241

Our trajectory analysis is confirmed in Fig. 4, which242

maps the harmonic intensities and polarizations as a243

function of the time delay (see also [33]). A rich interfer-244

ence structure is observed up to T = −0.5T , with large-245

scale and fine-scale oscillations (see also Fig. 5). The ori-246

gin of large- and fine-scale oscillations can be understood247

by analysing the phase difference between two trajecto-248

ries, which may be approximately presented as a linear249

function [see Eq. (5)]: Φ = S1−S2 ≈ Ω(t1−t2)+c0, where250

c0 is approximately constant. The interference of two tra-251

jectories with close return times (e.g., t1−t2 ≈ T/3) leads252

to large-scale oscillations, whereas interference of trajec-253

tories with very different return times (e.g., t1 − t2 ≥ T )254
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Figure 5. Dependence of the HHG yield (a) and degree of
circular polarization ξ (b) on the time delay, taken from Fig. 4
for harmonic energy Ω = 2.48 a.u. (N = 87). For this energy,
the analytic theory cannot be applied for |T | & 2.5T since
there are no real solutions of Eq. (2).

leads to fine-scale oscillations. Since for positive time de-255

lays the trajectories do not have large differences in their256

recombination times, the HHG spectra and polarization257

properties depend smoothly on the time delay.258

Figures 4(a) and 5(a) confirm the suppression of the259

HHG yield for close to zero two-pulse delay and its en-260

hancement for both positive and negative T . Such HHG261

yield behavior is consistent with the suppression and en-262

hancement of ionization with changing time delays be-263

tween the two pulses (see Fig. 3 and Fig. 1 in Ref. [33]).264

Figures 4(b) and 5(b) confirm the ability to control the265

ellipticity of a given emission frequency as a function of266

the two-color time delay, as predicted by the simple phys-267

ical model of two dominant emission bursts.268

To conclude, based on the proposed theoretical ap-269

proach for HHG driven by a few-cycle, counter-rotating270

bicircular laser field, we have shown that the waveform271

can be sculpted by means of the time delay between272
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pulses to efficiently control HHG intensities and polar-273

izations. This time-delay scheme has also been shown to274

allow generation of the seemingly forbidden 3N harmon-275

ics, in sharp contrast with the case of long-pulse bicircu-276

lar fields. Finally, as demonstrated above, the helicity of277

the generated harmonics can be continuously varied from278

−1 to +1 by changing the time delay between the two-279

color pulses, thus indicating that this time delay scheme280

is an efficient means to control harmonic polarizations.281
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